lkarch.org/tools/mathisfun/www.mathsisfun.com/algebra/complex-number-multiply.html
Lucas Kent e39465ad2f Changes to be committed:
new file:   Files/flashplayer_32_sa.exe
	new file:   favicon.ico
	new file:   globe.gif
	new file:   imgs/download.png
	new file:   imgs/zuck.jpg
	new file:   index.html
	new file:   other.ico
	new file:   script.js
	new file:   site.webmanifest
	new file:   sitemap.html
	new file:   styles/backround.css
	new file:   styles/border.css
	new file:   styles/fonts/Titillium_Web/OFL.txt
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf
	new file:   styles/fonts/webfontkit-20221027-163353/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2
	new file:   styles/fonts/webfontkit-20221027-165950/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2
	new file:   styles/style.css
	new file:   tools/2048/.gitignore
	new file:   tools/2048/.jshintrc
	new file:   tools/2048/CONTRIBUTING.md
	new file:   tools/2048/LICENSE.txt
	new file:   tools/2048/README.md
	new file:   tools/2048/Rakefile
	new file:   tools/2048/favicon.ico
	new file:   tools/2048/index.html
	new file:   tools/2048/js/animframe_polyfill.js
	new file:   tools/2048/js/application.js
	new file:   tools/2048/js/bind_polyfill.js
	new file:   tools/2048/js/classlist_polyfill.js
	new file:   tools/2048/js/game_manager.js
	new file:   tools/2048/js/grid.js
	new file:   tools/2048/js/html_actuator.js
	new file:   tools/2048/js/keyboard_input_manager.js
	new file:   tools/2048/js/local_storage_manager.js
	new file:   tools/2048/js/tile.js
    new file:   tools/2048/meta/apple-touch-icon.png
	new file:   tools/webretro/cores/neocd_libretro.js
	new file:   tools/webretro/cores/neocd_libretro.wasm
	new file:   tools/webretro/cores/nestopia_libretro.js
	new file:   tools/webretro/cores/nestopia_libretro.wasm
	new file:   tools/webretro/cores/o2em_libretro.js
	new file:   tools/webretro/cores/o2em_libretro.wasm
	new file:   tools/webretro/cores/opera_libretro.js
	new file:   tools/webretro/cores/opera_libretro.wasm
2022-11-02 08:40:01 -04:00

542 lines
21 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html lang="en"><!-- #BeginTemplate "/Templates/Advanced.dwt" --><!-- DW6 -->
<!-- Mirrored from www.mathsisfun.com/algebra/complex-number-multiply.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:59:35 GMT -->
<head>
<meta http-equiv="content-type" content="text/html; charset=utf-8">
<!-- #BeginEditable "doctitle" -->
<title>Complex Number Multiplication</title>
<meta name="description" content="Math explained in easy language, plus puzzles, games, quizzes, worksheets and a forum. For K-12 kids, teachers and parents.">
<!-- #EndEditable -->
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
<meta name="HandheldFriendly" content="true">
<meta name="referrer" content="always">
<link rel="stylesheet" type="text/css" href="../style3.css">
<script src="../main3.js"></script>
</head>
<body id="bodybg" class="adv">
<div class="bg">
<div id="stt"></div>
<div id="hdr"></div>
<div id="logo"><a href="../index.html"><img src="../images/style/logo.svg" alt="Math is Fun"></a></div>
<div id="advText">Advanced</div>
<div id="gtran">
<script>document.write(getTrans());</script>
</div>
<div id="adTopOuter" class="centerfull noprint">
<div id="adTop">
<script>document.write(getAdTop());</script>
</div>
</div>
<div id="adHide">
<div id="showAds1"><a href="javascript:showAds()">Show Ads</a></div>
<div id="hideAds1"><a href="javascript:hideAds()">Hide Ads</a><br>
<a href="../about-ads.html">About Ads</a></div>
</div>
<div id="menuWide" class="menu">
<script>document.write(getMenu(0));</script>
</div>
<div id="linkto">
<div id="linktort">
<script>document.write(getLinks());</script>
</div>
</div>
<div id="search" role="search">
<script>document.write(getSearch());</script>
</div>
<div id="menuSlim" class="menu">
<script>document.write(getMenu(1));</script>
</div>
<div id="menuTiny" class="menu">
<script>document.write(getMenu(2));</script>
</div>
<div id="extra"></div>
</div>
<div id="content" role="main">
<!-- #BeginEditable "Body" -->
<h1 class="center">Complex Number Multiplication</h1>
<p>A <a href="../numbers/complex-numbers.html">Complex Number</a> is a combination of a Real Number and an Imaginary Number:</p>
<div class="def">
<p>A <a href="../numbers/real-numbers.html">Real Number</a> is the type of number we use every day.</p>
<p>Examples: 12.38, ½, 0, 2000</p>
</div>
<div class="def">
<p>An <a href="../numbers/imaginary-numbers.html">Imaginary Number</a>, when <a href="../square-root.html">squared</a> gives a negative result:</p>
<p class="center"><img src="../numbers/images/imaginary-squared.svg" alt="imaginary squared gives negative"></p>
<p>The "unit" imaginary number when squared equals 1</p>
<p class="center"><span class="large">i<sup>2</sup> = <b>1</b></span></p>
<p>Examples: 5<b>i</b>, 3.6<b>i</b>, <b>i</b>/2, 500<b>i</b></p>
</div>
<div class="example">
<h3>Examples of Complex Numbers:</h3>
<div class="simple">
<table style="margin:auto">
<tbody>
<tr>
<td class="center">3.6 + 4<b>i</b></td>
<td><br></td>
<td class="center">(real part is 3.6, imaginary part is 4<b>i</b>)</td></tr>
<tr>
<td class="center">0.02 + 1.2<b>i</b> </td>
<td><br></td>
<td class="center">(real part is 0.02, imaginary part is 1.2<b></b><b>i</b>)</td></tr>
<tr>
<td class="center">25 0.3<b>i</b></td>
<td><br></td>
<td class="center">(real part is 25, imaginary part is 0.3<b>i</b>)</td></tr>
</tbody></table>
</div>
<p>Either part can be zero:</p>
<div class="simple">
<table style="margin:auto">
<tbody>
<tr>
<td class="center">0 + 2<b>i</b></td>
<td><br>
</td>
<td class="center">(no real part, imaginary part is 2<b>i</b>)</td>
<td><br></td>
<td>same as 2<b>i</b></td></tr>
<tr>
<td class="center">4 + 0<b>i</b></td>
<td><br></td>
<td class="center">(real part is 4, no imaginary part)</td>
<td><br></td>
<td>same as 4<b></b></td></tr>
</tbody></table>
</div>
</div>
<h2>Multiplying </h2>
<p>To multiply complex numbers:</p>
<p class="center"><b>Each part of the first complex number </b> gets multiplied by<br>
<b>each part of the second complex number</b></p>
<p>Just use "FOIL", which stands for "<b>F</b>irsts, <b>O</b>uters, <b>I</b>nners, <b>L</b>asts" (see <a href="polynomials-multiplying.html">Binomial Multiplication</a> for more details):</p>
<table style="border: 0; margin:auto;">
<tbody>
<tr>
<td><img src="images/foil-complex.svg" alt="FOIL: Firsts, Outers, Inners, Lasts"></td>
<td>
<ul>
<li>Firsts: <b>a × c</b></li>
<li>Outers: <b>a × di</b></li>
<li>Inners: <b>bi × c</b></li>
<li>Lasts: <b>bi × di</b></li>
</ul></td>
</tr>
<tr align="center">
<td colspan="2">
<p class="larger">(a+b<b>i</b>)(c+d<b>i</b>) = ac + ad<b>i</b> + bc<b>i</b> + bd<b>i<sup>2</sup></b></p></td>
</tr>
</tbody></table>
<p>Like this:</p>
<div class="example">
<h3>Example: (3 + 2<b>i</b>)(1 + 7<b>i</b><b></b>)</h3>
<div class="tbl">
<div class="row"><span class="left">(3 + 2<b>i</b>)(1 + 7<b>i</b><b></b>) </span><span class="right">= 3×1 + 3×7<b>i</b><b></b> + 2<b>i</b>×1+ 2<b>i</b><b></b>×7<b>i</b><b></b></span></div>
<div class="row"><span class="left">&nbsp;</span><span class="right">= 3 + 21<b>i</b> + 2<b>i</b> + 14<b>i</b><b></b><sup>2</sup></span></div>
<div class="row"><span class="left">&nbsp;</span><span class="right">= 3 + 21<b>i</b> + 2<b>i</b><b></b> 14 &nbsp; <i>(because </i><b>i</b><i><sup>2</sup> = 1)</i></span></div>
<div class="row"><span class="left">&nbsp;</span><span class="right">= 11 + 23<b>i</b><b></b></span></div>
</div>
</div>
<p>Here is another example:</p>
<div class="example">
<h3>Example: (1 + <b>i</b>)<sup>2</sup></h3>
<div class="tbl">
<div class="row"><span class="left">(1 + <b>i</b>)<sup>2</sup></span><span class="right">= (1 + <b>i</b>)(1 + <b>i</b>)</span></div>
<div class="row"><span class="left"></span><span class="right">= 1×1 + 1×<b>i</b> + 1×<b>i</b> + <b>i</b><sup>2</sup></span></div>
<div class="row"><span class="left">&nbsp;</span><span class="right">= 1 + 2<b>i</b> 1 &nbsp; <i>(because <b>i</b><sup>2</sup> = 1)</i></span></div>
<div class="row"><span class="left">&nbsp;</span><span class="right">= 0 + 2<b>i</b></span></div>
</div> </div>
<h3>But There is a Quicker Way!</h3>
<p>Use this rule:</p>
<p class="center"><span class="larger">(a+b<b>i</b>)(c+d<b>i</b>) = (acbd) + (ad+bc)<b>i</b></span></p>
<div class="example">
<h3>Example:</h3>
<div class="tbl">
<div class="row"><span class="left">(3 + 2<b>i</b>)(1 + 7<b>i</b>) =</span> <span class="right">(3×1 2×7) + (3×7 + 2×1)<b>i</b> </span></div>
<div class="row"><span class="left">=</span> <span class="right">11 + 23<b>i</b></span></div>
</div>
</div>
<h3>Why Does That Rule Work?</h3>
<p>It is just the "FOIL" method after a little work:</p>
<table align="center" border="0">
<tbody>
<tr>
<td>(a+b<b>i</b>)(c+d<b>i</b>)</td>
<td align="center" width="20">=</td>
<td>ac + ad<b>i</b> + bc<b>i</b> + bd<b>i</b><sup>2</sup></td>
<td width="20">&nbsp;</td>
<td>FOIL method</td>
</tr>
<tr>
<td>&nbsp;</td>
<td align="center">=</td>
<td>ac + ad<b>i</b> + bc<b>i</b> bd</td>
<td width="20">&nbsp;</td>
<td>(because <b>i</b><sup>2</sup>=1)</td>
</tr>
<tr>
<td>&nbsp;</td>
<td align="center">=</td>
<td>(ac bd) + (ad + bc)<b>i</b></td>
<td width="20">&nbsp;</td>
<td>(gathering like terms)</td>
</tr>
</tbody></table>
<p class="center">And there you have the <span class="larger">(ac bd) + (ad + bc)<b>i</b></span> &nbsp;pattern.</p>
<p>This rule is certainly faster, but if you forget it, just remember the FOIL method.</p>
<p>&nbsp;</p>
<p class="center"><b>Now let's see what multiplication looks like on the Complex Plane.</b></p>
<h2>The Complex Plane</h2>
<table align="center" border="0">
<tbody>
<tr>
<td><span class="center larger">This is the <a href="complex-plane.html">complex plane</a>:</span></td>
<td>
<p class="center"><img src="images/complex-plane.svg" alt="complex plane"></p>
<p class="center">It is a <b>plane</b> for <b>complex</b> numbers!</p></td>
</tr>
</tbody></table>
<table align="center" border="0">
<tbody>
<tr>
<td><span class="center">We can plot a complex number like <b>3 + 4i</b></span> :
<p>It is placed</p>
<ul>
<li>3 units along (the real axis),</li>
<li>and 4 units up (the imaginary axis).</li>
</ul></td>
<td width="30" valign="top">&nbsp;</td>
<td><br>
<img src="images/complex-plane-3-4i.svg" alt="complex plane 3+4i"></td>
</tr>
</tbody></table>
<h2>Multiplying By i</h2>
<table align="center" border="0">
<tbody>
<tr>
<td>
<p>Let's multiply it by <b>i</b>:</p>
<div class="so"> (3 + 4<b>i</b>) x <b>i</b> = 3<b>i</b> + 4<b>i</b><sup>2</sup></div>
<p>Which simplifies to (because <b>i</b><sup>2</sup> = 1):</p>
<div class="so">4 + 3<b>i</b></div></td>
<td width="30" valign="top">&nbsp;</td>
<td valign="bottom"><img src="images/complex-plane-vector-by-i.gif" alt="complex plane vector 3+4i by i = -4+31" height="120" width="164"></td>
</tr>
</tbody></table>
<p>And here is the cool thing ... it's the same as <b>rotating by a right angle</b> (90° or <span class="times">π</span>/2)</p>
<p>Was that just a weird coincidence?</p>
<table align="center" border="0">
<tbody>
<tr>
<td>
<p>Let's try multiplying by <b>i</b> again:</p>
<div class="so">(4 + 3<b>i</b>) x <b>i</b> = 4<b>i</b> + 3<b>i</b><sup>2</sup> = 3 4<b>i</b></div>
<p>and <i>again:</i></p>
<div class="so"><b><i></i></b>(3 4<b>i</b>) x <b>i</b> = 3<b>i</b> 4<b>i</b><sup>2</sup> = 4 3<b>i</b></div>
<p>and <i>again:</i></p>
<div class="so"><b><i></i></b>(4 3<b>i</b>) x <b>i</b> = 4<b>i</b> 3<b>i</b><sup>2</sup> = 3<b><i> +</i></b> 4<b>i</b></div></td>
<td width="30" valign="top">&nbsp;</td>
<td valign="bottom"><img src="images/complex-plane-vector-by-i4.svg" alt="complex plane vector by i 4 times is full rotation"></td>
</tr>
</tbody></table>
<p>Well, isn't that stunning? Each time it rotates by a right angle, until it ends up where it started.</p>
<p>Let's try it on the number 1:</p>
<table align="center" border="0">
<tbody>
<tr>
<td>
<table align="center" border="0">
<tbody>
<tr>
<td class="larger" align="right">1 × <b>i</b></td>
<td align="right">&nbsp;</td>
<td class="larger" align="left">= <b>i</b></td>
</tr>
<tr>
<td class="larger" align="right"><b>i</b> × <b>i</b></td>
<td align="right">&nbsp;</td>
<td class="larger" align="left">= 1</td>
</tr>
<tr>
<td class="larger" align="right">1 × <b>i</b></td>
<td align="right">&nbsp;</td>
<td class="larger" align="left">= <b>i</b></td>
</tr>
<tr>
<td class="larger" align="right"><b>i</b> × <b>i</b></td>
<td align="right">&nbsp;</td>
<td class="larger" align="left">= 1</td>
</tr>
<tr>
<td colspan="3" align="right">Back to 1 again!</td>
</tr>
</tbody></table></td>
<td width="30">&nbsp;</td>
<td><span class="center"><img src="../numbers/images/i-cycle-complex.svg" alt="i cycle on complex plane"></span></td>
</tr>
</tbody></table>
<p>Each time a right angle rotation.</p>
<p><i>Choose your own complex number and try that for yourself, it is good practice.</i></p>
<p>Let's look more closely at angles now.</p>
<h2>Polar Form</h2>
<table align="center" border="0">
<tbody>
<tr>
<td>Our friendly complex number <b>3 + 4i</b> :</td>
<td valign="top">&nbsp;</td>
<td><img src="images/complex-plane-3-4i-vector.svg" alt="complex plane 3+4i vector"></td>
</tr>
<tr>
<td>&nbsp;</td>
<td>&nbsp;</td>
<td>&nbsp;</td>
</tr>
<tr>
<td>
<p>Here it is again, but</p>
<p class="center"><b>in polar form:</b><br>
(distance and angle)</p></td>
<td valign="top">&nbsp;</td>
<td><img src="images/complex-plane-3-4i-polar.svg" alt="complex plane 3+4i polar"></td>
</tr>
</tbody></table>
<p>So the complex number <b>3 + 4i</b> can also be shown as distance (5) and angle (0.927 radians).</p>
<p>How do we do the conversions?</p>
<div class="example">
<h3>Example: the number <span class="center"><b>3 + 4i</b></span></h3>
<p>We can do a <a href="../polar-cartesian-coordinates.html">Cartesian to Polar conversion</a>:</p>
<ul>
<li><b>r = √(x<sup>2</sup> + y<sup>2</sup>)</b> = √(3<sup>2</sup> + 4<sup>2</sup>) = √25 = <b>5</b></li>
<li><b><i>θ</i> = tan<sup>-1</sup> (y/x)</b> = tan<sup>-1</sup> (4/3) =<b> 0.927</b> (to 3 decimals)</li>
</ul>
<p>&nbsp;</p>
<p>We can also take Polar coordinates and convert them to Cartesian coordinates:</p>
<ul>
<li><b>x = r × cos( <i>θ</i> )</b> = 5 × cos( 0.927 ) = 5 × 0.6002... = <b>3</b> (close enough)</li>
<li><b>y = r × sin(<i> θ</i> )</b> = 5 × sin( 0.927 ) = 5 × 0.7998... = <b>4</b> (close enough)</li>
</ul>
</div>
<p>In fact, a common way to write a complex number in Polar form is</p>
<table align="center" border="0">
<tbody>
<tr>
<td><span class="center">x + <b>i</b>y</span></td>
<td align="center" width="20">=</td>
<td><span class="center">r cos <i>θ</i> + <b>i</b> r sin <i>θ</i></span></td>
</tr>
<tr>
<td>&nbsp;</td>
<td align="center">=</td>
<td><span class="center"> r(cos <i>θ</i> + <b>i</b> sin <i>θ</i>)</span></td>
</tr>
</tbody></table>
<p>And "cos <i>θ</i> + <b>i</b> sin <i>θ</i>" is often shortened to "cis <i>θ</i>", so:</p>
<p class="center larger"><b>x + iy</b> = <b>r cis <i>θ</i></b></p>
<p class="words"><b>cis</b> is just shorthand for <b>cos <i>θ</i> + i sin <i>θ</i></b></p>
So we can write:
<p class="center larger"><b>3 + 4i</b> = <b>5 cis 0.927</b></p>
<p>In some subjects, like electronics, "cis" is used a lot!</p>
<h2>Now For Some More Multiplication</h2>
<p>Let's try another multiplication:</p>
<div class="example">
<h3>Example: Multiply 1+i by 3+i</h3>
<div class="tbl">
<div class="row"><span class="left">(1+<b>i</b>) (3+<b>i</b>) =</span><span class="right">1(3+<b>i</b>) + <b>i</b>(3+<b>i</b>)</span></div>
<div class="row"><span class="left">&nbsp;=</span><span class="right">3 + <b>i</b> + 3<b>i</b> + <b>i</b><sup>2</sup></span></div>
<div class="row"><span class="left">&nbsp;=</span><span class="right">3 + 4<b>i</b> 1</span></div>
<div class="row"><span class="left">&nbsp;=</span><span class="right">2 + 4<b>i</b><b></b></span></div>
</div>
<p>And here is the result on the Complex Plane:</p>
<p class="center"><img src="images/complex-plane-1-i-3-i.gif" alt="complex plane 1+i, 3+i, 2+4i" height="176" width="166"></p>
</div>
<p>But it is more interesting to see those numbers in Polar Form:</p>
<div class="example">
<h3>Example: (continued)<span class="center"><b></b></span></h3>
<p>Convert <b>1+i</b> to Polar:</p>
<ul>
<li><b>r = </b> √(1<sup>2</sup> + 1<sup>2</sup>) = <b>√2</b></li>
<li><b><i>θ</i> = </b>tan<sup>-1</sup> (1/1) =<b> 0.785</b> (to 3 decimals)</li>
</ul>
<p>&nbsp;</p>
<p>Convert <b>3+i</b> to Polar:</p>
<ul>
<li><b>r = </b> √(3<sup>2</sup> + 1<sup>2</sup>) = <b>√10</b></li>
<li><b><i>θ</i> = </b>tan<sup>-1</sup> (1/3) =<b> 0.322</b> (to 3 decimals)</li>
</ul>
<p>&nbsp;</p>
<p>Convert <b>2+4i</b> to Polar:</p>
<ul>
<li><b>r = </b> √(2<sup>2</sup> + 4<sup>2</sup>) = <b>√20</b></li>
<li><b><i>θ</i> = </b>tan<sup>-1</sup> (4/2) =<b> 1.107</b> (to 3 decimals)</li>
</ul>
<p>&nbsp;</p>
<p>Have a look at the <b>r</b> values for a minute. Are they related somehow? <br>
And what about the <b><i>θ</i></b> values?</p>
<p>Here is that multiplication in one line (using "cis"):</p>
<p class="center larger">(√2 cis 0.785) <b>×</b> (√10 cis 0.322) <b>=</b> √20 cis 1.107</p>
<p>This is the interesting thing:</p>
<ul>
<li><b>√2 x √10 = √20</b><b></b></li>
<li><b> 0.785 + 0.322 = 1.107</b></li>
</ul>
<p>So:</p>
<p class="center">The magnitudes get multiplied. <br>
And the angles get added.</p>
</div>
<div class="center80">
<p>When multiplying in Polar Form: <b>multiply the magnitudes, add the angles.</b></p>
</div>
<p>&nbsp;</p>
<div class="fun">
<p style="float:left; margin: 0 10px 5px 0;"><img src="images/complex-plane-i.gif" alt="complex plane i is right angle" height="108" width="111"></p>
<p>And that is why multiplying by <b>i</b> rotates by a right angle:</p>
<div class="so"><b>i</b> has a magnitude of 1 and forms a right angle on the complex plane</div>
</div>
<h2>Squaring</h2>
<p>To square a complex number, multiply it by itself:</p>
<ul>
<li>multiply the magnitudes: magnitude × magnitude = magnitude<sup>2</sup></li>
<li>add the angles: angle + angle = 2 , so we double them.</li>
</ul>
<p>Result: square the magnitudes, double the angle.</p>
<div class="example">
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/complex-plane-vector-1-21-squared.gif" alt="complex plane vector 1+2i squared is -3+4i" height="121" width="162"></p>
<h3>Example: Let us square 1 +<b><i></i></b> 2<b>i</b>:</h3>
<div class="so"><b><i></i></b>(1 +<b><i></i></b> 2<b>i</b>)(1 +<b><i></i></b> 2<b>i</b>) = 1 + 4<b>i</b> + 4<b>i</b><sup>2</sup> = 3<b><i> +</i></b> 4<b>i</b></div>
<p>On the diagram the angle looks to be (and is!) doubled.</p>
<p>Also:</p>
<ul>
<li>The magnitude of (1+2<b>i</b>) = √(1<sup>2</sup> + 2<sup>2</sup>) = √5</li>
<li>The magnitude of (3+4<b>i</b>) = √(3<sup>2</sup> + 4<sup>2</sup>) = √25 = 5</li>
</ul>
<p>So the magnitude got squared, too.</p>
</div>
<p>In general, a complex number like:</p>
<p class="center larger">r(cos <i>θ</i> + <b>i</b> sin <i>θ</i>)</p>
<p>When <b>squared</b> becomes:</p>
<p class="center larger">r<sup>2</sup>(cos 2<i>θ</i> + <b>i</b> sin 2<i>θ</i>)</p>
<p class="center"><i>(the magnitude <b>r</b> gets squared and the angle <b>θ</b> gets doubled.)</i></p>
<p>Or in the shorter "cis" notation:</p>
<p class="def center large">(r cis <i>θ</i>)<sup>2</sup> = r<sup>2</sup> cis 2<i>θ</i></p>
<p class="center">&nbsp;</p>
<p style="float:left; margin: 0 10px 15px 0;"><img src="images/de-moivre.jpg" alt="de moivre" height="116" width="100"></p>
<h2>De Moivre's Formula</h2>
<p>And the mathematician <i>Abraham de Moivre</i> found it works for any integer exponent <b>n</b>:</p>
<p class="center larger">[ r(cos <i>θ</i> + <b>i</b> sin <i>θ</i>) ]<sup>n</sup> = r<sup>n</sup>(cos n<i>θ</i> + <b>i</b> sin n<i>θ</i>)</p>
<p class="center"><i>(the magnitude becomes <b>r<sup>n</sup></b> the angle becomes <b></b>.)</i></p>
<p>Or in the shorter "cis" notation:</p>
<p class="center def large">(r cis <i>θ</i>)<sup>n</sup> = r<sup>n</sup> cis n<i>θ</i></p>
<p class="center">&nbsp;</p>
<div class="example">
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/complex-plane-0-8i.gif" alt="complex plane 0-8i" height="198" width="100"></p>
<h3>Example: What is (1+<b>i</b>)<sup>6</sup></h3>
<p>Convert <b>1+<b>i</b></b> to Polar:</p>
<ul>
<li><b>r = </b> √(1<sup>2</sup> + 1<sup>2</sup>) = <b>√2</b></li>
<li><b><i>θ</i> = </b>tan<sup>-1</sup> (1/1) =<b> <span class="times">π</span>/4</b></li>
</ul>
<p>In "cis" notation: 1+<b>i</b> = <span class="center">√2 cis <span class="times">π</span>/4</span></p>
<p>Now, with an exponent of 6, <b>r</b> becomes <b>r<sup>6</sup></b>, <i>θ</i> becomes <i></i><i></i>:</p>
<p class="center">(√2 cis <span class="times">π</span>/4)<sup>6</sup> = (√2)<sup>6</sup> cis 6<span class="times">π</span>/4 = 8 cis 3<span class="times">π</span>/2</p>
<p>The magnitude is now 8, and the angle is <span class="center">3<span class="times">π</span>/2</span> (=270°)</p>
<p>Which is also <b>08<b>i</b></b> (see diagram)</p>
</div>
<p>&nbsp;</p>
<h2>Summary</h2>
<ul class="larger">
<li>Use "FOIL" to multiply complex numbers,</li>
<li>Or use the formula:
<div class="center larger">(a+b<b>i</b>)(c+d<b>i</b>) = (acbd) + (ad+bc)<b>i</b></div></li>
<li>Or use polar form and then multiply the magnitudes and add the angles.</li>
<li>De Moivre's Formula can be used for integer exponents:
<div class="center larger">[ r(cos <i>θ</i> + <b>i</b> sin <i>θ</i>) ]<sup>n</sup> = r<sup>n</sup>(cos n<i>θ</i> + <b>i</b> sin n<i>θ</i>)</div></li>
<li>Polar form <b>r cos <i>θ</i> + i r sin <i>θ</i></b> is often shortened to<b> r cis <i>θ</i></b></li>
</ul>
<p>&nbsp;</p>
<div class="questions">
<script>getQ(276, 8002, 8003, 8888, 8889, 8891, 277, 8004, 8005, 8890, 8892);</script>&nbsp; </div>
<div class="related">
<a href="../numbers/complex-numbers.html">Complex Numbers</a>
<a href="index.html">Algebra Index</a>
</div>
<!-- #EndEditable -->
</div>
<div id="adend" class="centerfull noprint">
<script>document.write(getAdEnd());</script>
</div>
<div id="footer" class="centerfull noprint">
<script>document.write(getFooter());</script>
</div>
<div id="copyrt">
Copyright © 2020 MathsIsFun.com
</div>
<script>document.write(getBodyEnd());</script>
</body>
<!-- Mirrored from www.mathsisfun.com/algebra/complex-number-multiply.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:59:36 GMT -->
</html>