new file: Files/flashplayer_32_sa.exe new file: favicon.ico new file: globe.gif new file: imgs/download.png new file: imgs/zuck.jpg new file: index.html new file: other.ico new file: script.js new file: site.webmanifest new file: sitemap.html new file: styles/backround.css new file: styles/border.css new file: styles/fonts/Titillium_Web/OFL.txt new file: styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf new file: styles/fonts/webfontkit-20221027-163353/generator_config.txt new file: styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css new file: styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css new file: styles/fonts/webfontkit-20221027-163353/stylesheet.css new file: styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html new file: styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff new file: styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2 new file: styles/fonts/webfontkit-20221027-165950/generator_config.txt new file: styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css new file: styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css new file: styles/fonts/webfontkit-20221027-165950/stylesheet.css new file: styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html new file: styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff new file: styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2 new file: styles/style.css new file: tools/2048/.gitignore new file: tools/2048/.jshintrc new file: tools/2048/CONTRIBUTING.md new file: tools/2048/LICENSE.txt new file: tools/2048/README.md new file: tools/2048/Rakefile new file: tools/2048/favicon.ico new file: tools/2048/index.html new file: tools/2048/js/animframe_polyfill.js new file: tools/2048/js/application.js new file: tools/2048/js/bind_polyfill.js new file: tools/2048/js/classlist_polyfill.js new file: tools/2048/js/game_manager.js new file: tools/2048/js/grid.js new file: tools/2048/js/html_actuator.js new file: tools/2048/js/keyboard_input_manager.js new file: tools/2048/js/local_storage_manager.js new file: tools/2048/js/tile.js new file: tools/2048/meta/apple-touch-icon.png new file: tools/webretro/cores/neocd_libretro.js new file: tools/webretro/cores/neocd_libretro.wasm new file: tools/webretro/cores/nestopia_libretro.js new file: tools/webretro/cores/nestopia_libretro.wasm new file: tools/webretro/cores/o2em_libretro.js new file: tools/webretro/cores/o2em_libretro.wasm new file: tools/webretro/cores/opera_libretro.js new file: tools/webretro/cores/opera_libretro.wasm
271 lines
14 KiB
HTML
271 lines
14 KiB
HTML
<!DOCTYPE html>
|
||
<html lang="en"><!-- #BeginTemplate "/Templates/Advanced.dwt" --><!-- DW6 -->
|
||
|
||
<!-- Mirrored from www.mathsisfun.com/numbers/prime-numbers-advanced.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:59:05 GMT -->
|
||
<head>
|
||
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
|
||
|
||
|
||
<!-- #BeginEditable "doctitle" -->
|
||
<title>Prime Numbers - Advanced</title>
|
||
<script language="JavaScript" type="text/javascript">Author='Ganesh, Jayaraman and Pierce, Rod';</script>
|
||
<!-- #EndEditable -->
|
||
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
|
||
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
|
||
<meta name="HandheldFriendly" content="true">
|
||
<meta name="referrer" content="always">
|
||
<link rel="preload" href="../images/style/font-champ-bold.ttf" as="font" type="font/ttf" crossorigin="">
|
||
<link rel="preload" href="../style4.css" as="style">
|
||
<link rel="preload" href="../main4.js" as="script">
|
||
<link rel="stylesheet" href="../style4.css">
|
||
<script src="../main4.js" defer="defer"></script>
|
||
<!-- Global site tag (gtag.js) - Google Analytics -->
|
||
<script async="" src="https://www.googletagmanager.com/gtag/js?id=UA-29771508-1"></script>
|
||
<script>
|
||
window.dataLayer = window.dataLayer || [];
|
||
function gtag(){dataLayer.push(arguments);}
|
||
gtag('js', new Date());
|
||
gtag('config', 'UA-29771508-1');
|
||
</script>
|
||
</head>
|
||
|
||
<body id="bodybg" class="adv">
|
||
|
||
<div id="stt"></div>
|
||
<div id="adTop"></div>
|
||
<header>
|
||
<div id="hdr"></div>
|
||
<div id="tran"></div>
|
||
<div id="adHide"></div>
|
||
<div id="cookOK"></div>
|
||
</header>
|
||
|
||
<div class="mid">
|
||
|
||
<nav>
|
||
<div id="menuWide" class="menu"></div>
|
||
<div id="logo"><a href="../index.html"><img src="../images/style/logo-adv.svg" alt="Math is Fun Advanced"></a></div>
|
||
|
||
<div id="search" role="search"></div>
|
||
<div id="linkto"></div>
|
||
|
||
<div id="menuSlim" class="menu"></div>
|
||
<div id="menuTiny" class="menu"></div>
|
||
</nav>
|
||
|
||
<div id="extra"></div>
|
||
|
||
<article id="content" role="main">
|
||
|
||
<!-- #BeginEditable "Body" -->
|
||
|
||
|
||
<h1 class="center">Prime Numbers - Advanced Concepts</h1>
|
||
|
||
<h3>Prime Numbers</h3>
|
||
<p>A Prime Number is a whole number above 1 that cannot be made by multiplying other whole numbers.</p>
|
||
<div class="example">
|
||
<p>Examples: 2, 3, 5, 7, 11, etc.</p>
|
||
</div>
|
||
<p>You might like to read about <a href="../prime-composite-number.html">Prime Numbers</a> and <a href="prime-properties.html">Prime Properties</a> first.</p>
|
||
<p><br></p>
|
||
|
||
<h3>Twin Primes</h3>
|
||
<p>A pair of prime numbers that differ by 2 (successive odd numbers that are both Prime numbers).</p>
|
||
<div class="example">
|
||
<p>Examples: <b>(3, 5)</b>, <b>(5, 7)</b>, <b>(11, 13)</b>, ...</p>
|
||
</div>
|
||
<p>It is not known whether the set of twin prime numbers ends or not.</p>
|
||
|
||
<h3>Coprimes or Relatively prime numbers</h3>
|
||
<p>A pair of numbers not having any common factors other than 1 or -1. (Or alternatively their <a href="../greatest-common-factor.html">greatest common factor</a> is 1 or -1)</p>
|
||
<div class="example">
|
||
<p>Example: 15 and 28 are co-prime, because the factors of 15 (1, 3, 5, 15), and the factors of 28 (1, 2, 4, 7, 14, 28) are not in common (except for 1).</p>
|
||
</div>
|
||
|
||
<h3>Mersenne's Primes</h3>
|
||
<p>Prime numbers of the form <b>2<sup>n</sup>-1</b> where n must itself be prime.</p>
|
||
<p class="indent50px">3, 7, 31, 127 etc. are Mersenne primes.</p>
|
||
<p>Not all such numbers are primes. For example, 2047 (i.e. 2<sup>11</sup>-1) is not a prime number. It is divisible by 23 and 89.</p>
|
||
<div class="words">Mersenne's Primes are named after the French monk, theologian, philosopher and number-theorist <b>Marin Mersenne</b> (1588-1648 AD).</div>
|
||
|
||
<h3>Perfect numbers</h3>
|
||
<p>Any positive integer that is equal to the sum of its distinct proper factors (factors other than the number itself).</p>
|
||
<div class="example">
|
||
<p>Example: 6 (proper factors: 1, 2, 3) is a Perfect number because 1+2+3=6.</p>
|
||
</div>
|
||
<div class="example">
|
||
<p>Example: 28 (proper factors: 1, 2, 4, 7, 14) is also a Perfect number, because 1+2+4+7+14=28.</p>
|
||
</div>
|
||
<p>Euclid proved that<b> 2<sup>n-1</sup>(2<sup>n</sup>-1)</b> is an even perfect number when <b>2<sup>n</sup>-1</b> is a Mersenne prime. These are now called Euclid numbers and Euler proved that all even Perfect numbers are of this form for some positive prime number n. Thus, 6, 28,496 are Perfect and correspond to values of 3, 7, and 31 for 2<sup>n</sup>-1 in the formula.</p>
|
||
<p>This table shows the results for n=1 to 13 which include the first five Perfect numbers:</p>
|
||
<div class="beach">
|
||
<table align="center" width="90%" border="0">
|
||
<tbody>
|
||
<tr>
|
||
<th align="right">n</th>
|
||
<th align="right">2<sup>n</sup>-1</th>
|
||
<th align="right"><b>2<sup>n-1</sup>(2<sup>n</sup>-1)</b></th>
|
||
<th align="center">Perfect?</th>
|
||
<th>Comment</th>
|
||
</tr>
|
||
<tr>
|
||
<td style="text-align:right;">1</td>
|
||
<td style="text-align:right;">1</td>
|
||
<td style="text-align:right;">1</td>
|
||
<td style="text-align:center;">No</td>
|
||
<td>n is not prime</td>
|
||
</tr>
|
||
<tr>
|
||
<td style="text-align:right;">2</td>
|
||
<td style="text-align:right;">3</td>
|
||
<td style="text-align:right;"><b>6</b></td>
|
||
<td style="text-align:center;"><b>Yes</b></td>
|
||
<td>n is prime, 2<sup>n</sup>-1 is prime</td>
|
||
</tr>
|
||
<tr>
|
||
<td style="text-align:right;">3</td>
|
||
<td style="text-align:right;">7</td>
|
||
<td style="text-align:right;"><b>28</b></td>
|
||
<td style="text-align:center;"><b>Yes</b></td>
|
||
<td>n is prime, 2<sup>n</sup>-1 is prime</td>
|
||
</tr>
|
||
<tr>
|
||
<td style="text-align:right;">4</td>
|
||
<td style="text-align:right;">15</td>
|
||
<td style="text-align:right;">120</td>
|
||
<td style="text-align:center;">No</td>
|
||
<td>n is not prime</td>
|
||
</tr>
|
||
<tr>
|
||
<td style="text-align:right;">5</td>
|
||
<td style="text-align:right;">31</td>
|
||
<td style="text-align:right;"><b>496</b></td>
|
||
<td style="text-align:center;"><b>Yes</b></td>
|
||
<td>n is prime, 2<sup>n</sup>-1 is prime</td>
|
||
</tr>
|
||
<tr>
|
||
<td style="text-align:right;">6</td>
|
||
<td style="text-align:right;">63</td>
|
||
<td style="text-align:right;">2016</td>
|
||
<td style="text-align:center;">No</td>
|
||
<td>n is not prime</td>
|
||
</tr>
|
||
<tr>
|
||
<td style="text-align:right;">7</td>
|
||
<td style="text-align:right;">127</td>
|
||
<td style="text-align:right;"><b>8128</b></td>
|
||
<td style="text-align:center;"><b>Yes</b></td>
|
||
<td>n is prime, 2<sup>n</sup>-1 is prime</td>
|
||
</tr>
|
||
<tr>
|
||
<td style="text-align:right;"><i>8 to 10</i></td>
|
||
<td style="text-align:right;">...</td>
|
||
<td style="text-align:right;">...</td>
|
||
<td style="text-align:center;">No</td>
|
||
<td><i>not prime</i></td>
|
||
</tr>
|
||
<tr>
|
||
<td style="text-align:right;">11</td>
|
||
<td style="text-align:right;">2047</td>
|
||
<td style="text-align:right;">2096128</td>
|
||
<td style="text-align:center;">No</td>
|
||
<td>n is prime, but 2<sup>n</sup>-1 is not prime</td>
|
||
</tr><tr>
|
||
<td style="text-align:right;">12</td>
|
||
<td style="text-align:right;">4095</td>
|
||
<td style="text-align:right;">8386560</td>
|
||
<td style="text-align:center;">No</td>
|
||
<td>n is not prime</td>
|
||
</tr>
|
||
<tr>
|
||
<td style="text-align:right;">13</td>
|
||
<td style="text-align:right;">8191</td>
|
||
<td style="text-align:right;"><b>33550336</b></td>
|
||
<td style="text-align:center;"><b>Yes</b></td>
|
||
<td>n is prime, 2<sup>n</sup>-1 is prime</td>
|
||
</tr>
|
||
</tbody></table>
|
||
</div>
|
||
<p>Whether there are infinitely many even Perfect numbers or any odd perfect numbers remain unsolved questions.</p>
|
||
|
||
<h3>Abundant numbers</h3>
|
||
<p>Any positive integer that is less than the sum of its distinct proper factors (factors other than the number itself).</p>
|
||
<div class="example">
|
||
<p>Example: 12 is abundant since its distinct proper factors are 1, 2, 3, 4, and 6 whose sum is 16.</p>
|
||
</div>
|
||
|
||
<h3>Deficient Numbers</h3>
|
||
<p>Any positive integer that exceeds the sum of its distinct proper factors.</p>
|
||
<p>Any prime number is deficient, because it has only one proper factor: 1.</p>
|
||
<p>All numbers of the form 2<sup>n</sup> are also deficient.</p>
|
||
<div class="example">
|
||
<p>Example: 32 (=2<sup>5</sup>) is a deficient number because the sum of its distinct proper factors is 31 (1+2+4+8+16).</p>
|
||
</div>
|
||
<p>Furthermore, numbers of the form p<sup>n</sup> are always deficient where p is a prime number and n is a postive integer.</p>
|
||
<div>
|
||
<div class="example">
|
||
<p>Example: 3<sup>5</sup>=243.</p>
|
||
<p>The factors of 243 other than itself are 81, 27, 9, 3 and 1.</p>
|
||
<p>Sum of these factors is 121, which is less than 243.</p>
|
||
<p>Similarly, 5<sup>6</sup>=15625, the factors of 15625 are 1, 5, 25, 125, 625, and 3125.</p>
|
||
<p>The sum of these is 3906 which is less than 15625.</p>
|
||
</div>
|
||
</div>
|
||
|
||
<h3>Amicable numbers</h3>
|
||
<p>A pair of integers, each of which is the sum of the distinct proper factors of the other.</p>
|
||
<div>
|
||
<div class="example">
|
||
<p>Example: 220 and 284 are amicable numbers because:</p>
|
||
<ul>
|
||
<li>Factors of 220 (other than itself) are 1, 2, 4, 5, 10, 11, 20, 22, 44, 55, 110.<br>
|
||
Sum of these factors = 284</li>
|
||
<li>Factors of 284 (other than itself) are 1, 2, 4, 71, 142.<br>
|
||
Sum of these factors = 220.</li>
|
||
</ul>
|
||
</div>
|
||
</div>
|
||
|
||
<h3>Wilson's theorem</h3>
|
||
<p>If, and only if, <b>n</b> is prime then (n-1)!+1 is a multiple of n:</p>
|
||
<p class="center"><b>(n-1)! ≡ -1 (mod n)</b></p>
|
||
|
||
<h3>Euclid's proof that the set of prime numbers is endless</h3>
|
||
<p>The proof works by showing that if we assume that there is a biggest prime number, then there is a contradiction.</p>
|
||
<p>We can number all the primes in ascending order, so that P1 = 2, P2 = 3, P3 = 5 and so on. If we assume that there are just <b>n</b> primes, then the biggest prime will be labelled <b>Pn</b> . Now we can form the number Q by multiplying together all these primes and adding 1, so</p>
|
||
<p class="center"><b>Q = (P1 × P2 × P3 × P4... × Pn) + 1</b></p>
|
||
<p>Now we can see that if we divide Q by any of our n primes there is always a remainder of 1, so Q is not divisible by any of the primes.</p>
|
||
<p>But we know that all positive integers are either primes or can be decomposed into a product of primes. This means that either Q must be prime or Q must be divisible by primes that are larger than Pn.</p>
|
||
<p>Our assumption that Pn is the biggest prime has led us to a contradiction, so this assumption must be false, so there is no biggest prime.</p>
|
||
|
||
<h3>Goldbach's Conjecture</h3>
|
||
<p>The conjecture that every even number (greater than or equal to 6) can be written as the sum of two odd prime numbers.</p>
|
||
<div class="words">
|
||
Goldbach's Conjecture is named after Prussian born number-theorist and analyst <b>Christian Goldbach</b> (1690-1764 AD) who was a Professor of Mathematics at, and the Historian of, the Russian Imperial Academy. He was also the tutor of Peter the Great, and was a member of the Tsar's foreign ministry.
|
||
</div>
|
||
<p>Goldbach also conjectured that all odd numbers are the sum of three odd primes: Vinogradov's theorem shows this true of all except possibly finitely many odd numbers.</p>
|
||
<p> </p>
|
||
<div class="questions">2236, 2237, 2238, 2239, 2240, 2241</div>
|
||
|
||
<div class="related">
|
||
<a href="../prime-composite-number.html">Prime and Composite Numbers</a>
|
||
<a href="../prime-factorization.html">Prime Factorization</a>
|
||
<a href="prime-factorization-tool.html">Prime Factorization Tool</a>
|
||
<a href="prime-number-lists.html">Prime Number Lists</a>
|
||
</div>
|
||
<!-- #EndEditable -->
|
||
|
||
</article>
|
||
|
||
<div id="adend" class="centerfull noprint"></div>
|
||
<footer id="footer" class="centerfull noprint"></footer>
|
||
<div id="copyrt">Copyright © 2021 MathsIsFun.com</div>
|
||
|
||
</div>
|
||
|
||
|
||
|
||
</body><!-- #EndTemplate -->
|
||
<!-- Mirrored from www.mathsisfun.com/numbers/prime-numbers-advanced.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:59:05 GMT -->
|
||
</html> |