Lucas Kent e39465ad2f Changes to be committed:
new file:   Files/flashplayer_32_sa.exe
	new file:   favicon.ico
	new file:   globe.gif
	new file:   imgs/download.png
	new file:   imgs/zuck.jpg
	new file:   index.html
	new file:   other.ico
	new file:   script.js
	new file:   site.webmanifest
	new file:   sitemap.html
	new file:   styles/backround.css
	new file:   styles/border.css
	new file:   styles/fonts/Titillium_Web/OFL.txt
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf
	new file:   styles/fonts/webfontkit-20221027-163353/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2
	new file:   styles/fonts/webfontkit-20221027-165950/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2
	new file:   styles/style.css
	new file:   tools/2048/.gitignore
	new file:   tools/2048/.jshintrc
	new file:   tools/2048/CONTRIBUTING.md
	new file:   tools/2048/LICENSE.txt
	new file:   tools/2048/README.md
	new file:   tools/2048/Rakefile
	new file:   tools/2048/favicon.ico
	new file:   tools/2048/index.html
	new file:   tools/2048/js/animframe_polyfill.js
	new file:   tools/2048/js/application.js
	new file:   tools/2048/js/bind_polyfill.js
	new file:   tools/2048/js/classlist_polyfill.js
	new file:   tools/2048/js/game_manager.js
	new file:   tools/2048/js/grid.js
	new file:   tools/2048/js/html_actuator.js
	new file:   tools/2048/js/keyboard_input_manager.js
	new file:   tools/2048/js/local_storage_manager.js
	new file:   tools/2048/js/tile.js
    new file:   tools/2048/meta/apple-touch-icon.png
	new file:   tools/webretro/cores/neocd_libretro.js
	new file:   tools/webretro/cores/neocd_libretro.wasm
	new file:   tools/webretro/cores/nestopia_libretro.js
	new file:   tools/webretro/cores/nestopia_libretro.wasm
	new file:   tools/webretro/cores/o2em_libretro.js
	new file:   tools/webretro/cores/o2em_libretro.wasm
	new file:   tools/webretro/cores/opera_libretro.js
	new file:   tools/webretro/cores/opera_libretro.wasm
2022-11-02 08:40:01 -04:00

618 lines
25 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html lang="en"><!-- #BeginTemplate "/Templates/Main.dwt" --><!-- DW6 -->
<!-- Mirrored from www.mathsisfun.com/numbers/factorial.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:35:50 GMT -->
<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
<!-- #BeginEditable "doctitle" -->
<title>Factorial Function !</title>
<style>
.intgl {display:inline-block; margin: -4% 0 4% -1%; transform: translateX(20%) translateY(35%);}
.intgl .to {text-align:center; width:2em; font: 0.8em Verdana; margin: 0 0 -5px 8px;}
.intgl .symb {font: 180% Georgia;}
.intgl .symb:before { content: "\222B";}
.intgl .from {text-align:center; width:2em; font: 0.8em Verdana; overflow:visible; }
.sigma {display:inline-block; margin: -4% 0 4% -1%; transform: translateX(20%) translateY(35%);}
.sigma .to {text-align:center; width:2em; font: 0.8em Verdana; margin: 0 0 -12px 0;}
.sigma .symb {font: 200% Georgia; transform: translateY(16%); }
.sigma .symb:before { content: "\03A3";}
.sigma .from {text-align:center; width:2em; font: 0.8em Verdana; overflow:visible; }
</style>
<!-- #EndEditable -->
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
<meta name="HandheldFriendly" content="true">
<meta name="referrer" content="always">
<link rel="preload" href="../images/style/font-champ-bold.ttf" as="font" type="font/ttf" crossorigin="">
<link rel="preload" href="../style4.css" as="style">
<link rel="preload" href="../main4.js" as="script">
<link rel="stylesheet" href="../style4.css">
<script src="../main4.js" defer="defer"></script>
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async="" src="https://www.googletagmanager.com/gtag/js?id=UA-29771508-1"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'UA-29771508-1');
</script>
</head>
<body id="bodybg">
<div id="stt"></div>
<div id="adTop"></div>
<header>
<div id="hdr"></div>
<div id="tran"></div>
<div id="adHide"></div>
<div id="cookOK"></div>
</header>
<div class="mid">
<nav>
<div id="menuWide" class="menu"></div>
<div id="logo"><a href="../index.html"><img src="../images/style/logo.svg" alt="Math is Fun"></a></div>
<div id="search" role="search"></div>
<div id="linkto"></div>
<div id="menuSlim" class="menu"></div>
<div id="menuTiny" class="menu"></div>
</nav>
<div id="extra"></div>
<article id="content" role="main">
<!-- #BeginEditable "Body" -->
<h1 class="center">Factorial !</h1>
<p class="center"><i>Example: <b>4!</b> is shorthand for <b>4 × 3 × 2 × 1</b></i></p>
<div class="simple">
<table style="border: 0; margin:auto;">
<tbody>
<tr>
<td style="width:60px; text-align:center;"><img src="images/factorial.svg" alt="Factorial Symbol" height="" width=""></td>
<td>
<p>The <b>factorial function</b> (symbol: <b><font size="+1">!</font></b>) says to <b>multiply all whole numbers</b> from our chosen number down to 1.</p>
<p>Examples:</p>
<ul>
<div class="bigul">
<li><b>4!</b> = 4 × 3 × 2 × 1 = 24</li>
<li><b>7!</b> = 7 × 6 × 5 × 4 × 3 × 2 × 1 = 5040</li>
<li><b>1!</b> = 1</li>
</div>
</ul> </td>
</tr>
</tbody></table></div><br>
<div class="words">We usually say (for example) <b> 4!</b> as "4 factorial", but some people say "4 shriek" or "4 bang"</div>
<h2>Calculating From the Previous Value</h2>
<p>We can easily calculate a factorial from the previous one:</p>
<p class="center"><img src="images/factorial-how.svg" alt="factorial multiply" height="61" width="279"></p>
<p>As a table:</p>
<div class="beach">
<table align="center" width="400" border="0">
<tbody>
<tr style="text-align:center;">
<th>n</th>
<th>n!</th>
<th>&nbsp;</th>
<th>&nbsp;</th>
</tr>
<tr style="text-align:center;">
<td>1</td>
<td><b>1</b></td>
<td>1</td>
<td>1</td>
</tr>
<tr style="text-align:center;">
<td>2</td>
<td>2 × <b>1</b></td>
<td>= 2 × <b>1!</b></td>
<td>= 2</td>
</tr>
<tr style="text-align:center;">
<td>3</td>
<td>3 × <b>2 × 1</b></td>
<td>= 3 × <b>2!</b></td>
<td>= 6</td>
</tr>
<tr style="text-align:center;">
<td>4</td>
<td>4 × <b>3 × 2 × 1</b></td>
<td>= 4 × <b>3!</b></td>
<td>= 24</td>
</tr>
<tr style="text-align:center;">
<td>5</td>
<td>5 × <b>4 × 3 × 2 × 1</b></td>
<td>= 5 × <b>4!</b></td>
<td>= 120</td>
</tr>
<tr style="text-align:center;">
<td>6</td>
<td>etc</td>
<td>etc</td>
<td>&nbsp;</td>
</tr>
</tbody></table>
</div><br>
<ul>
<li>To work out 6!, multiply 120 by <b>6</b> to get 720</li>
<li>To work out 7!, multiply 720 by <b>7</b> to get 5040</li>
<li>And so on</li>
</ul>
<div class="example">
<h3>Example: 9! equals 362,880. Try to calculate 10!</h3>
<p>10! = 10 × 9!</p>
<p>10! = 10 × 362,880 = <b>3,628,800</b></p>
</div>
<p>So the rule is:</p>
<p class="center large">n! = n × (n1)!</p>
<p>Which says</p>
<p class="center">"the factorial of any number is <b>that number</b> times the <b>factorial of (that number minus 1)</b>"</p>
<p>So 10! = 10 × 9!, ... and 125! = 125 × 124!, etc.</p>
<h2>What About "0!"</h2>
<p>Zero Factorial is interesting ... it is generally agreed that <b>0! = 1</b>.</p>
<p>It may seem funny that multiplying no numbers together results in 1, but let's follow the pattern backwards from, say, 4! like this:</p>
<p class="center"><img src="images/zero-factorial.svg" alt="24/4=6, 6/3=2, 2/2=1, 1/1=1" height="149" width="130"></p>
<p>And in many equations using 0! = 1 just makes sense.</p>
<div class="example">
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/arrange-letters-acb.jpg" alt="arrange letters acb" height="113" width="200"></p>
<h3>Example: how many ways can we arrange letters (without repeating)?</h3>
<ul>
<li>For 1 letter "a" there is only <b>1</b> way: a</li>
<li>For 2 letters "ab" there are <b>1×2=2</b> ways: ab, ba</li>
<li>For 3 letters "abc" there are <b>1×2×3=6</b> ways: abc acb cab bac bca cba</li>
<li>For 4 letters "abcd" there are <b>1×2×3×4=24</b> ways: (try it yourself!)</li>
<li>etc</li>
</ul>
<p>The formula is simply <b>n!</b></p>
<p>Now ... how many ways can we arrange no letters? Just one way, an empty space:</p>
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/arrange-letters-none.jpg" alt="arrange letters none" height="113" width="200"></p>
<p>So <b>0! = 1</b></p>
</div>
<h2>Where is Factorial Used?</h2>
<p>One area they are used is in <a href="../combinatorics/combinations-permutations.html">Combinations and Permutations</a>. We had an example above, and here is a slightly different&nbsp; example:</p>
<div class="example">
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/winners.jpg" alt="1st, 2nd and 3rd" height="202" width="219"></p>
<h3>Example: How many different ways can 7 people come 1<sup>st</sup>, 2<sup>nd</sup> and 3<sup>rd</sup>?</h3>
<p>The list is quite long, if the 7 people are called <i>a,b,c,d,e,f</i> and <i>g</i> then the list includes:</p>
<p class="center"><i>abc, abd, abe, abf, abg, acb, acd, ace, acf, ...</i> etc.</p>
<p>The formula is <span class="intbl"><em>7!</em><strong>(73)!</strong></span><b> = <span class="intbl"><em>7!</em><strong>4!</strong></span></b></p>
<p>Let us write the multiplies out in full:</p>
<p class="center larger"><span class="intbl"><em style="text-align:right;"><b>7 × 6 × 5 × 4 × 3 × 2 × 1</b></em><strong style="text-align:right;"><b>4 × 3 × 2 × 1</b></strong></span><b>&nbsp; = &nbsp;7 × 6 × 5</b></p>
<p>That was neat. The <b>4 × 3 × 2 × 1</b> "cancelled out", leaving only <b>7 × 6 × 5</b>. And:</p>
<p class="center larger"><b>7 × 6 × 5&nbsp; = &nbsp;210</b></p>
<p>So there are 210 different ways that 7 people could come 1<sup>st</sup>, 2<sup>nd</sup> and 3<sup>rd</sup>.</p>
<p>Done!</p>
</div>
<div class="example">
<h3>Example: What is 100! / 98!</h3>
<p>Using our knowledge from the previous example we can jump straight to this:</p>
<p class="center larger"><span class="intbl"><em>100!</em><strong>98!</strong></span> = 100 × 99 = 9900</p>
</div>
<h2>A Small List</h2>
<div class="beach">
<table align="center" width="50%" border="0">
<tbody>
<tr style="text-align:center;">
<th>n</th>
<th>n!</th>
</tr>
<tr style="text-align:center;">
<td>0</td>
<td>1</td>
</tr>
<tr style="text-align:center;">
<td>1</td>
<td>1</td>
</tr>
<tr style="text-align:center;">
<td>2</td>
<td>2</td>
</tr>
<tr style="text-align:center;">
<td>3</td>
<td>6</td>
</tr>
<tr style="text-align:center;">
<td>4</td>
<td>24</td>
</tr>
<tr style="text-align:center;">
<td>5</td>
<td>120</td>
</tr>
<tr style="text-align:center;">
<td>6</td>
<td>720</td>
</tr>
<tr style="text-align:center;">
<td>7</td>
<td>5,040</td>
</tr>
<tr style="text-align:center;">
<td>8</td>
<td>40,320</td>
</tr>
<tr style="text-align:center;">
<td>9</td>
<td>362,880</td>
</tr>
<tr style="text-align:center;">
<td>10</td>
<td>3,628,800</td>
</tr>
<tr style="text-align:center;">
<td>11</td>
<td>39,916,800</td>
</tr>
<tr style="text-align:center;">
<td>12</td>
<td>479,001,600</td>
</tr>
<tr style="text-align:center;">
<td>13</td>
<td>6,227,020,800</td>
</tr>
<tr style="text-align:center;">
<td>14</td>
<td>87,178,291,200</td>
</tr>
<tr style="text-align:center;">
<td>15</td>
<td>1,307,674,368,000</td>
</tr>
<tr style="text-align:center;">
<td>16</td>
<td>20,922,789,888,000</td>
</tr>
<tr style="text-align:center;">
<td>17</td>
<td>355,687,428,096,000</td>
</tr>
<tr style="text-align:center;">
<td>18</td>
<td>6,402,373,705,728,000</td>
</tr>
<tr style="text-align:center;">
<td>19</td>
<td>121,645,100,408,832,000</td>
</tr>
<tr style="text-align:center;">
<td>20</td>
<td>2,432,902,008,176,640,000</td>
</tr>
<tr style="text-align:center;">
<td>21</td>
<td> 51,090,942,171,709,440,000</td>
</tr>
<tr style="text-align:center;">
<td>22</td>
<td> 1,124,000,727,777,607,680,000</td>
</tr>
<tr style="text-align:center;">
<td>23</td>
<td> 25,852,016,738,884,976,640,000</td>
</tr>
<tr style="text-align:center;">
<td>24</td>
<td> 620,448,401,733,239,439,360,000</td>
</tr>
<tr style="text-align:center;">
<td>25</td>
<td> 15,511,210,043,330,985,984,000,000</td>
</tr>
</tbody></table></div>
<p>As you can see, it gets big quickly.</p>
<p>If you need more, try the <a href="../calculator-precision.html">Full Precision Calculator</a>.</p>
<h2>Interesting Facts</h2>
<div class="fun">
<p><b>Six weeks</b> is exactly <b>10!</b> seconds (=3,628,800)</p>
<p>Here is why:</p>
<table style="border: 0; margin:auto;">
<tbody>
<tr>
<td style="text-align:right;"><i>Seconds in 6 weeks:</i></td>
<td style="width:20px;">&nbsp;</td>
<td style="text-align:center;">60 × 60 × 24 × 7 × 6</td>
</tr>
<tr>
<td style="text-align:right;"><i>Factor some numbers:</i></td>
<td>&nbsp;</td>
<td style="text-align:center;">(2 × 3 × 10) × (3 × 4 × 5) × (8 × 3) × 7 × 6</td>
</tr>
<tr>
<td style="text-align:right;"><i>Rearrange:</i></td>
<td>&nbsp;</td>
<td style="text-align:center;">2 × 3 × 4 × 5 × 6 × 7 × 8 × 3 × 3 × 10</td>
</tr>
<tr>
<td style="text-align:right;"><i>Lastly 3×3=9:</i></td>
<td>&nbsp;</td>
<td style="text-align:center;">2 × 3 × 4 × 5 × 6 × 7 × 8 × 9 × 10</td>
</tr>
</tbody></table>
</div><p>&nbsp;</p>
<div class="fun">
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/deck-cards.jpg" alt="deck of cards" height="148" width="200"></p>
<p>There are <b>52!</b> ways to shuffle a deck of cards.</p>
<p>That is <b>8.0658175... × 10<sup>67</sup></b></p>
<p>Just shuffle a deck&nbsp;of cards and it is likely that you are the <b>first person ever</b> with that particular order.</p>
</div><p>&nbsp;</p>
<div class="fun">
<p>There are about <b>60!</b> atoms in the observable Universe.</p>
<p>60! is about <b> 8.320987... × 10<sup>81</sup></b> and the current estimates are between 10<sup>78</sup> to 10<sup>82</sup> atoms in the observable Universe.</p>
</div>
<p>&nbsp;</p>
<div class="fun">
<p><b>70!</b> is approximately <b>1.197857... x 10<sup>100</sup></b>, which is just larger than a Googol (the digit 1 followed by one hundred zeros).</p>
<p><b>100!</b> is approximately 9.3326215443944152681699238856 x 10<sup>157</sup></p>
<p><b>200!</b> is approximately 7.8865786736479050355236321393 x 10<sup>374</sup></p>
</div>
<p>&nbsp;</p>
<h1>Advanced Topics</h1>
<h3>A Close Formula!</h3>
<!--
<div class="center large">n! ≈ n<sup>n+1</sup> e<sup>n</sup>
<div class="intgl">
<div class="to">∞</div>
<div class="symb"></div>
<div class="from">0</div>
</div> e<sup>a<span class="intbl"><em>n</em><strong>2</strong></span> (z1)<sup>2</sup></sup> dz</div>
<!-- n! APR n^n+1 e^-n INT{0,INF} e^a -n/2 (z-1)^2 dz -->
<div class="center large">n! ≈ (<span class="intbl"><em>n</em><strong>e</strong></span>)<sup>n</sup> <span style="font-size:120%;"></span><span class="overline">2<span class="times">π</span>n </span></div>
<!-- n! APR ( n/e )^n SQR( 2PIn ) -->
<p>The "≈" means "approximately equal to". Let us see how good it is: </p>
<div class="beach">
<table style="" class="center">
<tbody>
<tr><th>n</th><th>n!</th><th>Close Formula<br>(to 2 Decimals)</th><th>Accuracy<br>(to 4 Decimals)</th></tr>
<tr>
<td>1</td>
<td>1</td>
<td>0.92</td>
<td>0.9221</td></tr>
<tr>
<td>2</td>
<td>2</td>
<td>1.92</td>
<td>0.9595</td></tr>
<tr>
<td>3</td>
<td>6</td>
<td>5.84</td>
<td>0.9727</td></tr>
<tr>
<td>4</td>
<td>24</td>
<td>23.51</td>
<td>0.9794</td></tr>
<tr>
<td>5</td>
<td>120</td>
<td>118.02</td>
<td>0.9835</td></tr>
<tr>
<td>6</td>
<td>720</td>
<td>710.08</td>
<td>0.9862</td></tr>
<tr>
<td>7</td>
<td>5040</td>
<td>4980.40</td>
<td>0.9882</td></tr>
<tr>
<td>8</td>
<td>40320</td>
<td>39902.40</td>
<td>0.9896</td></tr>
<tr>
<td>9</td>
<td>362880</td>
<td>359536.87</td>
<td>0.9908</td></tr>
<tr>
<td>10</td>
<td>3628800</td>
<td>3598695.62</td>
<td>0.9917</td></tr>
<tr>
<td>11</td>
<td>39916800</td>
<td>39615625.05</td>
<td>0.9925</td></tr>
<tr>
<td>12</td>
<td>479001600</td>
<td>475687486.47</td>
<td>0.9931</td></tr>
</tbody></table>
</div>
<p>If you don't need perfect accuracy this may be useful.</p>
<p>Note: it is called "Stirling's approximation" and is based on a simplifed version of the <a href="gamma-function.html">Gamma Function</a>.</p>
<p><br></p>
<h3>What About Negatives?</h3>
<p>Can we have factorials for negative numbers?</p>
<p><b>Yes ... but not for n</b><b>egative <i>integers.</i></b></p>
<p>Negative <i>integer</i> factorials (like -1!, -2!, etc) are <b>undefined</b>.</p>
<p>Let's start with 3! = 3 × 2 × 1 = 6 and go <b>down</b>:</p>
<table style="border: 0;">
<tbody>
<tr>
<td style="width:20px;">&nbsp;</td>
<td style="text-align:right;">2!</td>
<td style="text-align:center; width:20px;">=</td>
<td style="text-align:center;">3! / 3</td>
<td style="text-align:center; width:20px;">=</td>
<td style="text-align:center;">6 / 3</td>
<td style="text-align:center; width:20px;">=</td>
<td>2</td>
<td style="width:30px;">&nbsp;</td>
<td>&nbsp;</td>
</tr>
<tr>
<td>&nbsp;</td>
<td style="text-align:right;">1! </td>
<td style="text-align:center;">=</td>
<td style="text-align:center;">2! / 2</td>
<td style="text-align:center;">=</td>
<td style="text-align:center;">2 / 2</td>
<td style="text-align:center;">=</td>
<td>1</td>
<td><br></td>
<td>&nbsp;</td>
</tr>
<tr>
<td>&nbsp;</td>
<td style="text-align:right;">0!</td>
<td style="text-align:center;">=</td>
<td style="text-align:center;">1! / 1</td>
<td style="text-align:center;">=</td>
<td style="text-align:center;">1 / 1</td>
<td style="text-align:center;">=</td>
<td>1</td>
<td><br></td>
<td><i>&nbsp; which is why 0!=1</i></td>
</tr>
<tr>
<td>&nbsp;</td>
<td style="text-align:right;"> (1)!</td>
<td style="text-align:center;">=</td>
<td style="text-align:center;">0! / 0 </td>
<td style="text-align:center;">=</td>
<td>1 / 0</td>
<td style="text-align:center;">=</td>
<td>? </td>
<td><br></td>
<td><i><b>&nbsp; oops, dividing by zero is undefined</b></i></td>
</tr>
</tbody></table>
<p>And from here on down <b>all integer factorials are undefined</b>.</p>
<p><br></p>
<h3>What About Decimals?</h3>
<p>Can we have factorials for numbers like 0.5 or 3.217?</p>
<p><b>Yes we can!</b> But we need to use the <a href="gamma-function.html">Gamma Function</a> (advanced topic).</p>
<p>Factorials can also be negative (except for negative integers).</p>
<p><br></p>
<h3>Half Factorial</h3>
<p>But I can tell you the factorial of <b>half</b> (½) is <b>half of the square root of <a href="pi.html">pi</a></b> .</p>
<p>Here are some "half-integer" factorials:</p>
<div class="simple">
<table style="border: 0; margin:auto;">
<tbody>
<tr>
<td style="text-align:center; width:100px;">(−½)!</td>
<td style="text-align:center; width:30px;">=</td>
<td style="text-align:center; width:100px;"><span class="times">√π</span></td>
</tr>
<tr>
<td style="text-align:center;">(½)!</td>
<td style="text-align:center;">=</td>
<td style="text-align:center;">(½)<span class="times">√π</span></td>
</tr>
<tr>
<td style="text-align:center;">(3/2)!</td>
<td style="text-align:center;">=</td>
<td style="text-align:center;">(3/4)<span class="times">√π</span></td>
</tr>
<tr>
<td style="text-align:center;">(5/2)!</td>
<td style="text-align:center;">=</td>
<td style="text-align:center;">(15/8)<span class="times">√π</span></td>
</tr>
</tbody></table>
</div>
<p>It still follows the rule that "the factorial of any number is <b>that number times the factorial of (1 smaller than that number)</b>", because</p>
<p class="center">(3/2)! = (3/2) × (1/2)!<br>
(5/2)! = (5/2) × (3/2)!</p>
<p>Can you figure out what (7/2)! is?</p>
<p><br></p>
<h3>Double Factorial!!</h3>
<p>A double factorial is like a normal factorial but we skip every second number:</p>
<ul>
<li> 8!! = 8 × 6 × 4 × 2 = 384 </li>
<li>9!! = 9 × 7 × 5 × 3 × 1 = 945 </li></ul>
<p>Notice how we multiply all even, or all odd, numbers. </p>
<p>Note: if we want to apply factorial twice we write (n!)!</p>
<p>&nbsp;</p>
<div class="questions">2229, 2230, 7006, 2231, 7007, 9080, 9081, 9082, 9083, 9084</div>
<div class="related">
<a href="../combinatorics/combinations-permutations.html">Combinations and Permutations</a>
<a href="gamma-function.html">Gamma Function</a>
<a href="index.html">Numbers Index</a>
</div>
<!-- #EndEditable -->
</article>
<div id="adend" class="centerfull noprint"></div>
<footer id="footer" class="centerfull noprint"></footer>
<div id="copyrt">Copyright © 2022 Rod Pierce</div>
</div>
</body><!-- #EndTemplate -->
<!-- Mirrored from www.mathsisfun.com/numbers/factorial.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:35:52 GMT -->
</html>