new file: Files/flashplayer_32_sa.exe new file: favicon.ico new file: globe.gif new file: imgs/download.png new file: imgs/zuck.jpg new file: index.html new file: other.ico new file: script.js new file: site.webmanifest new file: sitemap.html new file: styles/backround.css new file: styles/border.css new file: styles/fonts/Titillium_Web/OFL.txt new file: styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf new file: styles/fonts/webfontkit-20221027-163353/generator_config.txt new file: styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css new file: styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css new file: styles/fonts/webfontkit-20221027-163353/stylesheet.css new file: styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html new file: styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff new file: styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2 new file: styles/fonts/webfontkit-20221027-165950/generator_config.txt new file: styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css new file: styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css new file: styles/fonts/webfontkit-20221027-165950/stylesheet.css new file: styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html new file: styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff new file: styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2 new file: styles/style.css new file: tools/2048/.gitignore new file: tools/2048/.jshintrc new file: tools/2048/CONTRIBUTING.md new file: tools/2048/LICENSE.txt new file: tools/2048/README.md new file: tools/2048/Rakefile new file: tools/2048/favicon.ico new file: tools/2048/index.html new file: tools/2048/js/animframe_polyfill.js new file: tools/2048/js/application.js new file: tools/2048/js/bind_polyfill.js new file: tools/2048/js/classlist_polyfill.js new file: tools/2048/js/game_manager.js new file: tools/2048/js/grid.js new file: tools/2048/js/html_actuator.js new file: tools/2048/js/keyboard_input_manager.js new file: tools/2048/js/local_storage_manager.js new file: tools/2048/js/tile.js new file: tools/2048/meta/apple-touch-icon.png new file: tools/webretro/cores/neocd_libretro.js new file: tools/webretro/cores/neocd_libretro.wasm new file: tools/webretro/cores/nestopia_libretro.js new file: tools/webretro/cores/nestopia_libretro.wasm new file: tools/webretro/cores/o2em_libretro.js new file: tools/webretro/cores/o2em_libretro.wasm new file: tools/webretro/cores/opera_libretro.js new file: tools/webretro/cores/opera_libretro.wasm
486 lines
23 KiB
HTML
486 lines
23 KiB
HTML
<!DOCTYPE html>
|
||
<html lang="en"><!-- #BeginTemplate "/Templates/Advanced.dwt" --><!-- DW6 -->
|
||
|
||
<!-- Mirrored from www.mathsisfun.com/geometry/platonic-solids-why-five.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:59:03 GMT -->
|
||
<head>
|
||
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
|
||
|
||
<!-- #BeginEditable "doctitle" -->
|
||
<title>Platonic Solids - Why Five?</title>
|
||
<!-- #EndEditable -->
|
||
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
|
||
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
|
||
<meta name="HandheldFriendly" content="true">
|
||
<meta name="referrer" content="always">
|
||
<link rel="preload" href="../images/style/font-champ-bold.ttf" as="font" type="font/ttf" crossorigin="">
|
||
<link rel="preload" href="../style4.css" as="style">
|
||
<link rel="preload" href="../main4.js" as="script">
|
||
<link rel="stylesheet" href="../style4.css">
|
||
<script src="../main4.js" defer="defer"></script>
|
||
<!-- Global site tag (gtag.js) - Google Analytics -->
|
||
<script async="" src="https://www.googletagmanager.com/gtag/js?id=UA-29771508-1"></script>
|
||
<script>
|
||
window.dataLayer = window.dataLayer || [];
|
||
function gtag(){dataLayer.push(arguments);}
|
||
gtag('js', new Date());
|
||
gtag('config', 'UA-29771508-1');
|
||
</script>
|
||
</head>
|
||
|
||
<body id="bodybg" class="adv">
|
||
|
||
<div id="stt"></div>
|
||
<div id="adTop"></div>
|
||
<header>
|
||
<div id="hdr"></div>
|
||
<div id="tran"></div>
|
||
<div id="adHide"></div>
|
||
<div id="cookOK"></div>
|
||
</header>
|
||
|
||
<div class="mid">
|
||
|
||
<nav>
|
||
<div id="menuWide" class="menu"></div>
|
||
<div id="logo"><a href="../index.html"><img src="../images/style/logo-adv.svg" alt="Math is Fun Advanced"></a></div>
|
||
|
||
<div id="search" role="search"></div>
|
||
<div id="linkto"></div>
|
||
|
||
<div id="menuSlim" class="menu"></div>
|
||
<div id="menuTiny" class="menu"></div>
|
||
</nav>
|
||
|
||
<div id="extra"></div>
|
||
|
||
<article id="content" role="main">
|
||
|
||
<!-- #BeginEditable "Body" -->
|
||
|
||
|
||
<h1 class="center">Platonic Solids - Why Five?</h1>
|
||
|
||
<p class="center"><img src="images/poly-tetrahedron.svg" alt="Tetrahedron" height="94" width="90"><img src="images/poly-cube.svg" alt="Cube" height="88" width="88"><img src="images/poly-octahedron.svg" alt="Octahedron" height="86" width="85"><img src="images/poly-dodecahedron.svg" alt="Dodecahedron" height="93" width="93"> <img src="images/poly-icosahedron.svg" alt="Icosahedron" height="94" width="81"></p>
|
||
|
||
<p>A Platonic Solid is a <a href="common-3d-shapes.html">3D shape</a> where:</p>
|
||
<ul>
|
||
<li>each face is the same <a href="polygons.html">regular polygon</a></li>
|
||
<li>the same number of polygons meet at each vertex (corner)</li>
|
||
</ul>
|
||
<p>There are only five of them ... why?</p>
|
||
|
||
|
||
<h2>Simplest Reason: Angles at a Vertex</h2>
|
||
|
||
<p>The simplest reason there are only 5 Platonic Solids is this:</p>
|
||
<p style="float:left; margin: 0 10px 5px 0;"><img src="images/platonic-solids-why-5a.svg" alt="cube 3 faces meet at vertex" height="134" width="125"></p>
|
||
<p>At each vertex <b>at least 3 faces</b> meet (maybe more).</p>
|
||
<div style="clear:both"></div>
|
||
<p style="float:left; margin: 0 10px 5px 0;"><img src="images/platonic-solids-why-5b.svg" alt="cube 3 times 90 degrees at vertex" height="134" width="125"></p>
|
||
<p>When we add up the internal angles that meet at a vertex,<br>
|
||
it must be <b>less than 360 degrees</b>.</p>
|
||
<div style="clear:both"></div>
|
||
<p style="float:left; margin: 0 10px 5px 0;"><img src="images/platonic-solids-why-5c.svg" alt="four sqaures make 360 degrees, but flat" height="157" width="157"></p>
|
||
<p>Because at 360° the shape flattens out!</p>
|
||
<div style="clear:both"></div>
|
||
<p>And, since a Platonic Solid's faces are all identical <a href="polygons.html">regular polygons</a>, we get:</p>
|
||
|
||
<table style="border: 0; margin:auto;">
|
||
<tbody>
|
||
<tr>
|
||
<td align="center" width="90" valign="top"><img src="images/triangle-regular.svg" alt="regular triangle" height="100" width="110"></td>
|
||
<td>
|
||
<p>A regular triangle has internal angles of 60°, so we can have:</p>
|
||
<ul>
|
||
<li>3 triangles (3×60°=180°) meet</li>
|
||
<li>4 triangles (4×60°=240°) meet</li>
|
||
<li>or 5 triangles (5×60°=300°) meet</li>
|
||
</ul>
|
||
</td>
|
||
</tr>
|
||
<tr>
|
||
<td align="center" valign="top"><img src="images/quadrilateral-regular.svg" alt="regular quadrilateral" height="100" width="110"></td>
|
||
<td>
|
||
<p>A square has internal angles of 90°, so there is only:</p>
|
||
<ul>
|
||
<li>3 squares (3×90°=270°) meet</li>
|
||
</ul>
|
||
</td>
|
||
</tr>
|
||
<tr>
|
||
<td align="center" valign="top"><b><img src="images/pentagon-regular.svg" alt="pentagon regular" height="100" width="110"></b></td>
|
||
<td>
|
||
<p>A regular pentagon has internal angles of 108°, so there is only:</p>
|
||
<ul>
|
||
<li>3 pentagons (3×108°=324°) meet</li>
|
||
</ul>
|
||
</td>
|
||
</tr>
|
||
<tr>
|
||
<td align="center" valign="top"><b><img src="images/hexagon-regular.svg" alt="hexagon regular" height="100" width="110"></b></td>
|
||
<td>
|
||
<p>A regular hexagon has internal angles of 120°, but 3×120°=360° which <b>won't work</b> because at 360° the shape flattens out.</p>
|
||
<p>So a regular pentagon is as far as we can go.</p>
|
||
</td>
|
||
</tr>
|
||
</tbody></table>
|
||
|
||
<p>And this is the result:</p>
|
||
<div class="beach">
|
||
|
||
<table style="border: 0; margin:auto;">
|
||
<tbody>
|
||
<tr style="text-align:center;">
|
||
<th width="200">At each vertex:</th>
|
||
<th width="150">Angles at Vertex<br>
|
||
(Less than 360°)</th>
|
||
<th width="100">Solid</th>
|
||
<th width="50"> </th>
|
||
</tr>
|
||
<tr style="text-align:center;">
|
||
<td> 3 triangles meet</td>
|
||
<td>180°</td>
|
||
<td style="width:100px;">tetrahedron</td>
|
||
<td style="width:50px;"><img src="images/poly-tetrahedron.svg" alt="Tetrahedron" height="94" width="90"></td>
|
||
</tr>
|
||
<tr style="text-align:center;">
|
||
<td>4 triangles meet</td>
|
||
<td>240°</td>
|
||
<td style="width:100px;">octahedron</td>
|
||
<td style="width:50px;"><img src="images/poly-octahedron.svg" alt="Octahedron" height="86" width="85"></td>
|
||
</tr>
|
||
<tr style="text-align:center;">
|
||
<td> 5 triangles meet</td>
|
||
<td>300°</td>
|
||
<td> icosahedron </td>
|
||
<td><img src="images/poly-icosahedron.svg" alt="Icosahedron" height="94" width="81"></td>
|
||
</tr>
|
||
<tr style="text-align:center;">
|
||
<td>3 squares meet</td>
|
||
<td>270°</td>
|
||
<td style="width:100px;">cube</td>
|
||
<td style="width:50px;"><img src="images/poly-cube.svg" alt="Cube" height="88" width="88"></td>
|
||
</tr>
|
||
<tr style="text-align:center;">
|
||
<td>3 pentagons meet</td>
|
||
<td>324°</td>
|
||
<td style="width:100px;"> dodecahedron</td>
|
||
<td style="width:50px;"><img src="images/poly-dodecahedron.svg" alt="Dodecahedron" height="93" width="93"></td>
|
||
</tr>
|
||
</tbody></table>
|
||
<p>Anything else has 360° or more at a vertex, which is impossible. Example: 4 regular pentagons (4×108° = 432°) won't work. And 3 regular hexagons (3×120° = 360°) won't work either.</p>
|
||
</div>
|
||
<p>And that is the simplest reason.</p>
|
||
|
||
|
||
<h2><b>Another Reason (using Topology)</b></h2>
|
||
|
||
<p>Just for fun, let us look at another (slightly more complicated) reason.</p>
|
||
<p class="fun">In a nutshell: it is impossible to have more than 5 platonic solids, because any other possibility violates simple rules about the number of edges, corners and faces we can have together.</p>
|
||
<p>It begins with Euler's Formula ...</p>
|
||
|
||
|
||
<h2>Euler's Formula</h2>
|
||
|
||
<p>Do you know about <a href="eulers-formula.html">Euler's Formula</a>?</p>
|
||
<p>It says: for any convex polyhedron (which includes the <a href="../platonic_solids.html">Platonic Solids</a>) the <b>Number of Faces</b> plus the <b>Number of Vertices</b> (corner points) minus the <b>Number of Edges</b> always equals 2</p>
|
||
<p class="center larger"><img src="../images/style/dot-blue.gif" alt="dot" height="14" width="14"> It is written: <b>F + V − E = 2</b></p>
|
||
|
||
<div class="example">
|
||
<p style="float:left; margin: 0 10px 5px 0;"><img src="images/poly-cube.svg" alt="hexahedron" height="88" width="88"></p>
|
||
<p>Try it on the cube:</p>
|
||
<p>A cube has 6 Faces, 8 Vertices, and 12 Edges,</p>
|
||
<p class="center">so:</p>
|
||
<p class="center larger">6 + 8 − 12 = <b>2</b></p>
|
||
</div><br>
|
||
<div class="beach">
|
||
|
||
<table style="border: 0; margin:auto;">
|
||
<tbody>
|
||
<tr>
|
||
<td style="text-align:right;">
|
||
<p>To see why this works, imagine taking the cube and adding an edge<br>
|
||
(say from corner to corner of one face).<br>
|
||
<br>
|
||
We get an extra edge, plus an extra face:</p>
|
||
<p class="larger"><b>7</b> + 8 − <b>13</b> = 2</p></td>
|
||
<td><img src="images/cube-extra-face.svg" alt="cube extra face" height="88" width="88"></td>
|
||
</tr>
|
||
<tr>
|
||
<td style="text-align:right;"> </td>
|
||
<td> </td>
|
||
</tr>
|
||
<tr>
|
||
<td style="text-align:right;">
|
||
<p>Likewise when we include another vertex<br>
|
||
we get an extra edge, too.</p>
|
||
<p class="larger">6 + <b>9</b> − <b>13</b> = 2.</p></td>
|
||
<td><img src="images/cube-extra-vertex.svg" alt="cube extra vertex" height="88" width="88"></td>
|
||
</tr>
|
||
<tr>
|
||
<td style="text-align:right;"><i><b>"No matter what we do, we always end up with 2"</b><br>
|
||
(But only for this type of Polyhedron ... read on!)</i></td>
|
||
<td> </td>
|
||
</tr>
|
||
</tbody></table>
|
||
</div>
|
||
|
||
|
||
<h2>Faces Meet</h2>
|
||
|
||
<p>Next, think about a typical platonic solid. What kind of faces does it have, and how many meet at a corner (vertex)?</p>
|
||
<div class="simple">
|
||
|
||
<table align="center" width="90%" border="0">
|
||
<tbody>
|
||
<tr>
|
||
<td colspan="2">The faces can be triangles (3 sides), squares (4 sides), etc. </td>
|
||
</tr>
|
||
<tr>
|
||
<td width="8%"><img src="../images/style/right-arrow.gif" alt="right arrow" height="46" width="46"></td>
|
||
<td width="92%">Let us call this "<b>s</b>", the number of <b>s</b>ides each face has.</td>
|
||
</tr>
|
||
</tbody></table>
|
||
</div><br>
|
||
<div class="simple">
|
||
|
||
<table align="center" width="90%" border="0">
|
||
<tbody>
|
||
<tr>
|
||
<td colspan="2">Also, at each corner, how many faces meet? For a cube 3 faces meet at each corner. For an octahedron 4 faces meet at each corner.</td>
|
||
</tr>
|
||
<tr>
|
||
<td width="8%"><img src="../images/style/right-arrow.gif" alt="right arrow" height="46" width="46"></td>
|
||
<td width="92%">Let us call this "<b>m</b>" (how many faces <b>m</b>eet at a corner).</td>
|
||
</tr>
|
||
</tbody></table>
|
||
<p>(Those two are actually enough to show what type of solid it is)</p>
|
||
</div>
|
||
|
||
|
||
<h2>Exploding Solids!</h2>
|
||
|
||
<p>Now, imagine we pull a solid apart, cutting each face free.</p>
|
||
<p>We get all these little flat shapes. And there are twice as many edges (because we cut along each edge).</p>
|
||
<p style="float:left; margin: 0 10px 5px 0;"><img src="images/cube-explode-edges.svg" alt="cube explode 12 edges become 24 edges" height="116" width="269"></p>
|
||
<p>Example: the cut-up-cube is now six little squares.</p>
|
||
<p>And each square has 4 edges, making a total of 24 edges (versus 12 edges when joined up to make a cube).</p>
|
||
<div style="clear:both"></div>
|
||
<p>So, how many edges? Twice as many as the original number of edges "E", or simply <b>2E</b></p>
|
||
<p>But this is also the same as counting all the edges of the little shapes. There are <b>s</b> <i>(number of sides per face)</i> times <b>F</b> <i>(number of faces)</i>.</p>
|
||
<p class="center larger"><img src="../images/style/dot-blue.gif" alt="dot" height="14" width="14"> This can be written as <b>sF = 2E</b></p>
|
||
<p class="center larger"> </p>
|
||
|
||
<table style="border: 0; margin:auto;">
|
||
<tbody>
|
||
<tr>
|
||
<td style="text-align:right;">
|
||
<p>Likewise, when we cut it up, what <i>was</i> one corner will now be <i><b>several corners</b></i>.</p>
|
||
<p>In the case of a cube there are three times as many corners.</p>
|
||
</td>
|
||
<td><img src="images/cube-explode-corners.svg" alt="cube explode corners" height="152" width="170"></td>
|
||
</tr>
|
||
</tbody></table><br>
|
||
<ul>
|
||
<li>The new number of corners is: how many faces that meet at a corner (<b>m</b>) times how many vertices of the original solid (<b>V</b>), which is <b>mV</b></li>
|
||
<li>The new number of edges is: twice as many as the original solid, which is <b>2E</b></li>
|
||
</ul> And because we now have a collection of polygons there is the <b>same number of corners as edges</b> (a square has 4 corners and 4 edges, a pentagon has 5 corners and 5 edges, etc.)<br>
|
||
<p class="center larger"><img src="../images/style/dot-blue.gif" alt="dot" height="14" width="14"> This can be written as <b>mV = 2E</b></p>
|
||
|
||
|
||
<h2>Bring Equations Together</h2>
|
||
|
||
<p>That is all the equations we need, let us use them together:</p>
|
||
<p class="center"><span class="larger"><b>sF = 2E</b>, so <b>F = 2E/s</b><br>
|
||
<b>mV = 2E</b>, so <b>V = 2E/m</b></span></p>
|
||
<p>Now let us put those into "F+V−E=2":</p>
|
||
<p class="center larger">F + V − E = 2<br>
|
||
<b>2E/s</b> + <b>2E/m</b> − E = 2</p>
|
||
<p>Next, some rearranging ... divide the lot by "2E":</p>
|
||
<p class="center larger">1/s + 1/m − 1/2 = 1/E</p>
|
||
<p>Now, "E", the number of edges, cannot be less than zero, so "1/E" cannot be less than 0:</p>
|
||
<p class="center larger">1/s + 1/m − 1/2 <b>> 0</b></p>
|
||
<p>Or, more simply:</p>
|
||
<p class="center large">1/s + 1/m <b>> 1/2</b></p>
|
||
<p>So, all we have to do now is try different values of:</p>
|
||
<ul>
|
||
<li>"<b>s</b>" (number of sides each face has, cannot be less than 3), and</li>
|
||
<li>"<b>m</b>" (number of faces that meet at a corner, cannot be less than 3),</li>
|
||
</ul>
|
||
<p>and we are done!</p>
|
||
|
||
|
||
<h2>The Possibilities!</h2>
|
||
|
||
<p>The possible answers are:</p>
|
||
<div class="beach">
|
||
|
||
<table style="border: 0; margin:auto;">
|
||
<tbody>
|
||
<tr style="text-align:center;">
|
||
<th width="50">s</th>
|
||
<th width="50">m</th>
|
||
<th width="100">1/s+1/m</th>
|
||
<th width="100">> 0.5 ?</th>
|
||
</tr>
|
||
<tr style="text-align:center;">
|
||
<td style="width:50px;">3</td>
|
||
<td style="width:50px;">3</td>
|
||
<td style="width:100px;">0.666...</td>
|
||
<td style="width:100px;"><img src="../images/style/yes.svg" alt="yes" height="30" width="30"></td>
|
||
</tr>
|
||
<tr style="text-align:center;">
|
||
<td style="width:50px;">3</td>
|
||
<td style="width:50px;">4</td>
|
||
<td style="width:100px;">0.583...</td>
|
||
<td style="width:100px;"><img src="../images/style/yes.svg" alt="yes" height="30" width="30"></td>
|
||
</tr>
|
||
<tr style="text-align:center;">
|
||
<td style="width:50px;">4</td>
|
||
<td style="width:50px;">3</td>
|
||
<td style="width:100px;">0.583...</td>
|
||
<td style="width:100px;"><img src="../images/style/yes.svg" alt="yes" height="30" width="30"></td>
|
||
</tr>
|
||
<tr style="text-align:center;">
|
||
<td style="width:50px;">4</td>
|
||
<td style="width:50px;">4</td>
|
||
<td style="width:100px;">0.5</td>
|
||
<td style="width:100px;"><img src="../images/style/no.svg" alt="not" height="30" width="30"></td>
|
||
</tr>
|
||
<tr style="text-align:center;">
|
||
<td style="width:50px;">5</td>
|
||
<td style="width:50px;">3</td>
|
||
<td style="width:100px;">0.533...</td>
|
||
<td style="width:100px;"><img src="../images/style/yes.svg" alt="yes" height="30" width="30"></td>
|
||
</tr>
|
||
<tr style="text-align:center;">
|
||
<td style="width:50px;">3</td>
|
||
<td style="width:50px;">5</td>
|
||
<td style="width:100px;">0.533...</td>
|
||
<td style="width:100px;"><img src="../images/style/yes.svg" alt="yes" height="30" width="30"></td>
|
||
</tr>
|
||
<tr style="text-align:center;">
|
||
<td style="width:50px;">5</td>
|
||
<td style="width:50px;">4</td>
|
||
<td style="width:100px;">0.45</td>
|
||
<td style="width:100px;"><img src="../images/style/no.svg" alt="not" height="30" width="30"></td>
|
||
</tr>
|
||
<tr style="text-align:center;">
|
||
<td style="width:50px;">4</td>
|
||
<td style="width:50px;">5</td>
|
||
<td style="width:100px;">0.45</td>
|
||
<td style="width:100px;"><img src="../images/style/no.svg" alt="not" height="30" width="30"></td>
|
||
</tr>
|
||
<tr style="text-align:center;">
|
||
<td style="width:50px;">5</td>
|
||
<td style="width:50px;">5</td>
|
||
<td style="width:100px;">0.4</td>
|
||
<td style="width:100px;"><img src="../images/style/no.svg" alt="not" height="30" width="30"></td>
|
||
</tr>
|
||
<tr style="text-align:center;">
|
||
<td style="width:50px;">etc...</td>
|
||
<td style="width:50px;">...</td>
|
||
<td style="width:100px;">...</td>
|
||
<td style="width:100px;"><img src="../images/style/no.svg" alt="not" height="30" width="30"></td>
|
||
</tr>
|
||
</tbody></table><br>
|
||
</div> <b>Result</b>: There are only 5 that work! All the rest are just not possible in the real world.
|
||
|
||
<div class="example">
|
||
|
||
<h3>Example: <b>s=5</b>, <b>m=5</b></h3>
|
||
<p><b>1/s + 1/m</b> <b>− 1/2 = 1/E</b> becomes</p>
|
||
<div class="so">1/5 + 1/5 − 1/2 = 1/E</div>
|
||
<div class="so">−0.1 = 1/E </div>
|
||
<p>which makes E (number of edges) = −10, And we can't have a negative number of edges!</p>
|
||
</div>
|
||
|
||
|
||
<h2><br>
|
||
Real?</h2>
|
||
|
||
<p>And the last step is to see if those solids are real:</p>
|
||
<div class="beach">
|
||
|
||
<table style="border: 0; margin:auto;">
|
||
<tbody>
|
||
<tr style="text-align:center;">
|
||
<th width="50">s</th>
|
||
<th width="50">m</th>
|
||
<th width="250">what it means</th>
|
||
<th width="100">solid</th>
|
||
<th width="50"> </th>
|
||
</tr>
|
||
<tr style="text-align:center;">
|
||
<td style="width:50px;">3</td>
|
||
<td style="width:50px;">3</td>
|
||
<td style="width:250px;">triangles meeting 3-at-a-corner</td>
|
||
<td style="width:100px;">tetrahedron</td>
|
||
<td style="width:50px;"><img src="images/poly-tetrahedron.svg" alt="Tetrahedron" height="94" width="90"></td>
|
||
</tr>
|
||
<tr style="text-align:center;">
|
||
<td style="width:50px;">3</td>
|
||
<td style="width:50px;">4</td>
|
||
<td style="width:250px;">triangles meeting 4-at-a-corner</td>
|
||
<td style="width:100px;">octahedron</td>
|
||
<td style="width:50px;"><img src="images/poly-octahedron.svg" alt="Octahedron" height="86" width="85"></td>
|
||
</tr>
|
||
<tr style="text-align:center;">
|
||
<td style="width:50px;">4</td>
|
||
<td style="width:50px;">3</td>
|
||
<td style="width:250px;">squares meeting 3-at-a-corner</td>
|
||
<td style="width:100px;">cube</td>
|
||
<td style="width:50px;"><img src="images/poly-cube.svg" alt="Cube" height="88" width="88"></td>
|
||
</tr>
|
||
<tr style="text-align:center;">
|
||
<td style="width:50px;">5</td>
|
||
<td style="width:50px;">3</td>
|
||
<td style="width:250px;">pentagons meeting 3-at-a-corner</td>
|
||
<td style="width:100px;"> dodecahedron</td>
|
||
<td style="width:50px;"><img src="images/poly-dodecahedron.svg" alt="Dodecahedron" height="93" width="93"></td>
|
||
</tr>
|
||
<tr style="text-align:center;">
|
||
<td style="width:50px;">3</td>
|
||
<td style="width:50px;">5</td>
|
||
<td style="width:250px;"> triangles meeting 5-at-a-corner</td>
|
||
<td style="width:100px;"> icosahedron </td>
|
||
<td style="width:50px;"><img src="images/poly-icosahedron.svg" alt="Icosahedron" height="94" width="81"></td>
|
||
</tr>
|
||
</tbody></table>
|
||
</div>
|
||
<p>So, only 5, and they all exist.</p>
|
||
<p><b>Job Done.</b></p>
|
||
|
||
|
||
<h2><br>
|
||
Schläfli !</h2>
|
||
|
||
<p>And just to keep you well educated ... the "s" and "m" values put together inside curly braces {} make what is called the "Schläfli symbol" for polyhedra:</p>
|
||
|
||
<div class="example">
|
||
<p>Examples:</p>
|
||
<ul>
|
||
<li>The Octahedron's Schläfli symbol is {3,4},</li>
|
||
<li>and the Icosahedron's is {3,5},</li>
|
||
</ul>
|
||
<p>can you work out the rest?</p>
|
||
</div>
|
||
<p> </p>
|
||
|
||
<div class="related">
|
||
<a href="../platonic_solids.html">Platonic Solids</a>
|
||
<a href="eulers-formula.html">Euler's Formula</a>
|
||
<a href="index.html">GeometryIndex</a>
|
||
</div>
|
||
<!-- #EndEditable -->
|
||
|
||
</article>
|
||
|
||
<div id="adend" class="centerfull noprint"></div>
|
||
<footer id="footer" class="centerfull noprint"></footer>
|
||
<div id="copyrt">Copyright © 2022 Rod Pierce</div>
|
||
|
||
</div>
|
||
</body><!-- #EndTemplate -->
|
||
<!-- Mirrored from www.mathsisfun.com/geometry/platonic-solids-why-five.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:59:04 GMT -->
|
||
</html> |