Lucas Kent e39465ad2f Changes to be committed:
new file:   Files/flashplayer_32_sa.exe
	new file:   favicon.ico
	new file:   globe.gif
	new file:   imgs/download.png
	new file:   imgs/zuck.jpg
	new file:   index.html
	new file:   other.ico
	new file:   script.js
	new file:   site.webmanifest
	new file:   sitemap.html
	new file:   styles/backround.css
	new file:   styles/border.css
	new file:   styles/fonts/Titillium_Web/OFL.txt
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf
	new file:   styles/fonts/webfontkit-20221027-163353/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2
	new file:   styles/fonts/webfontkit-20221027-165950/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2
	new file:   styles/style.css
	new file:   tools/2048/.gitignore
	new file:   tools/2048/.jshintrc
	new file:   tools/2048/CONTRIBUTING.md
	new file:   tools/2048/LICENSE.txt
	new file:   tools/2048/README.md
	new file:   tools/2048/Rakefile
	new file:   tools/2048/favicon.ico
	new file:   tools/2048/index.html
	new file:   tools/2048/js/animframe_polyfill.js
	new file:   tools/2048/js/application.js
	new file:   tools/2048/js/bind_polyfill.js
	new file:   tools/2048/js/classlist_polyfill.js
	new file:   tools/2048/js/game_manager.js
	new file:   tools/2048/js/grid.js
	new file:   tools/2048/js/html_actuator.js
	new file:   tools/2048/js/keyboard_input_manager.js
	new file:   tools/2048/js/local_storage_manager.js
	new file:   tools/2048/js/tile.js
    new file:   tools/2048/meta/apple-touch-icon.png
	new file:   tools/webretro/cores/neocd_libretro.js
	new file:   tools/webretro/cores/neocd_libretro.wasm
	new file:   tools/webretro/cores/nestopia_libretro.js
	new file:   tools/webretro/cores/nestopia_libretro.wasm
	new file:   tools/webretro/cores/o2em_libretro.js
	new file:   tools/webretro/cores/o2em_libretro.wasm
	new file:   tools/webretro/cores/opera_libretro.js
	new file:   tools/webretro/cores/opera_libretro.wasm
2022-11-02 08:40:01 -04:00

472 lines
20 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html lang="en"><!-- #BeginTemplate "/Templates/Advanced.dwt" --><!-- DW6 -->
<!-- Mirrored from www.mathsisfun.com/calculus/limits-infinity.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:48:56 GMT -->
<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
<!-- #BeginEditable "doctitle" -->
<title>Limits to Infinity</title>
<style>
.lim {
display: inline-table;
text-align: center;
vertical-align: middle;
margin: 0 4px 0 2px;
border-collapse: collapse;
}
.lim em {
display: table-row;
text-align: center;
font-style: inherit;
}
.lim strong {
display: table-row;
text-align: center;
font-weight: inherit;
font-size: 80%;
line-height: 9px;
}
</style>
<!-- #EndEditable -->
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
<meta name="HandheldFriendly" content="true">
<meta name="referrer" content="always">
<link rel="stylesheet" href="../style4.css">
<script src="../main4.js" defer="defer"></script>
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async="" src="https://www.googletagmanager.com/gtag/js?id=UA-29771508-1"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'UA-29771508-1');
</script>
</head>
<body id="bodybg" class="adv">
<div id="stt"></div>
<div id="adTop"></div>
<header>
<div id="hdr"></div>
<div id="tran"></div>
<div id="adHide"></div>
<div id="cookOK"></div>
</header>
<div class="mid">
<nav>
<div id="menuWide" class="menu"></div>
<div id="logo"><a href="../index.html"><img src="../images/style/logo-adv.svg" alt="Math is Fun"></a></div>
<div id="search" role="search"></div>
<div id="linkto"></div>
<div id="menuSlim" class="menu"></div>
<div id="menuTiny" class="menu"></div>
</nav>
<div id="extra"></div>
<article id="content" role="main">
<!-- #BeginEditable "Body" -->
<h1 class="center">Limits to Infinity</h1>
<p class="center"><i>Please read <a href="limits.html">Limits (An Introduction)</a> first</i></p>
<p style="float:left; margin: 0 10px 5px 0;"><img src="../sets/images/infinity.svg" alt="infinity"></p>
<p><br>
<a href="../numbers/infinity.html">Infinity</a> is a very special idea. We know we can't reach it, but we can still try to work out the value of functions that have infinity in them.</p>
<h2>One Divided By Infinity</h2>
<p>Let's start with an interesting example.</p>
<div class="simple">
<table align="center" width="400" border="0">
<tbody>
<tr>
<td class="larger">Question: What is the value of <span class="intbl">
<em>1</em>
<strong><span class="times"></span></strong>
</span> ?</td>
</tr>
</tbody></table><br>
<table align="center" width="400" border="0">
<tbody>
<tr>
<td class="large">Answer: We don't know!</td>
</tr>
</tbody></table>
</div>
<p class="center large">&nbsp;</p>
<h3>Why don't we know?</h3>
<p>The simplest reason is that Infinity is not a number, it is an idea.</p>
<p>So <span class="intbl">
<em>1</em>
<strong><span class="times"></span></strong>
</span> is a bit like saying <span class="intbl">
<em>1</em>
<strong>beauty</strong>
</span> or <span class="intbl">
<em>1</em>
<strong>tall</strong>
</span>.</p>
<p>Maybe we could say that <span class="intbl">
<em>1</em>
<strong><span class="times"></span></strong>
</span>= 0, ... but that is a problem too, because if we divide 1 into infinite pieces and they end up 0 each, what happened to the 1?</p>
<p class="center">In fact <span class="intbl">
<em>1</em>
<strong><span class="times"></span></strong>
</span> is known to be <b>undefined</b>.</p>
<h3>But We Can Approach It!</h3>
<p>So instead of trying to work it out for infinity (because we can't get a sensible answer), let's try larger and larger values of x:</p>
<p style="float:right; margin: 0 0 5px 10px;"><img src="../sets/images/function-reciprocal-pos.svg" alt="graph 1/x"></p>
<table style="border: 0; margin:auto;">
<tbody>
<tr style="text-align:right;">
<td><b>x</b></td>
<td><b><span class="intbl">
<em>1</em>
<strong>x</strong>
</span></b></td>
</tr>
<tr style="text-align:right;">
<td style="width:150px;">1</td>
<td style="width:150px;">1.00000</td>
</tr>
<tr style="text-align:right;">
<td style="width:150px;">2</td>
<td style="width:150px;">0.50000</td>
</tr>
<tr style="text-align:right;">
<td style="width:150px;">4</td>
<td style="width:150px;">0.25000</td>
</tr>
<tr style="text-align:right;">
<td style="width:150px;">10</td>
<td style="width:150px;">0.10000</td>
</tr>
<tr style="text-align:right;">
<td style="width:150px;">100</td>
<td style="width:150px;">0.01000</td>
</tr>
<tr style="text-align:right;">
<td style="width:150px;">1,000</td>
<td style="width:150px;">0.00100</td>
</tr>
<tr style="text-align:right;">
<td style="width:150px;">10,000</td>
<td style="width:150px;">0.00010</td>
</tr>
</tbody></table>
<p>Now we can see that as x gets larger, <b><span class="intbl">
<em>1</em>
<strong>x</strong>
</span></b> tends towards 0</p>
<p>We are now faced with an interesting situation:</p>
<ul>
<li>We can't say what happens when x gets to infinity</li>
<li>But we can see that <b><span class="intbl">
<em>1</em>
<strong>x</strong>
</span></b> is <b>going towards 0</b></li>
</ul>
<p>We want to give the answer "0" but can't, so instead mathematicians say exactly what is going on by using the special word "limit"</p>
<p class="center larger">The <b>limit</b> of <b><span class="intbl">
<em>1</em>
<strong>x</strong>
</span></b> as x approaches Infinity is<b> 0</b></p>
<p>And write it like this:</p>
<div class="center larger"><span class="lim"><em>lim</em><strong>x→∞</strong></span> (<span class="intbl"><em>1</em><strong>x</strong></span>) = 0</div>
<p><br></p>
<p>In other words:</p>
<p class="center large">As x approaches infinity, then <b><span class="intbl">
<em>1</em>
<strong>x</strong>
</span></b> approaches 0</p>
<p><i>When you see "limit", think "approaching"</i></p>
<p class="center large">&nbsp;</p>
<p>It is a mathematical way of saying <i>"we are not talking about when x=<span style="font-size: 20px; font-family: serif;"></span>, but we know as x gets bigger, the answer gets closer and closer to <b>0</b>"</i>.</p>
<h3>Summary</h3>
<p>So, sometimes Infinity cannot be used directly, but we <b>can</b> use a limit.</p>
<table style="border: 0; margin:auto;">
<tbody>
<tr>
<td>What happens <b>at</b> <span style="font-size: 20px; font-family: serif;"></span> is <b>undefined</b> ...</td>
<td>&nbsp;</td>
<td style="text-align: center; "><b><span class="intbl">
<em>1</em>
<strong></strong>
</span></b></td>
<td><br>
</td>
<td style="text-align: center; "><img src="../images/style/no.svg" alt="not"></td>
</tr>
<tr>
<td>&nbsp;</td>
<td>&nbsp;</td>
<td style="text-align: center;">&nbsp;</td>
<td>&nbsp;</td>
<td style="text-align: center;">&nbsp;</td>
</tr>
<tr>
<td>... but we do know that <b>1/x approaches 0</b><br>
as <b>x approaches infinity</b></td>
<td>&nbsp;</td>
<td style="text-align: center;">
<div class="center larger"><span class="lim"><em>lim</em><strong>x→∞</strong></span> (<span class="intbl"><em>1</em><strong>x</strong></span>) = 0</div>
</td>
<td>&nbsp;</td>
<td style="text-align: center;"><img src="../images/style/yes.svg" alt="yes"></td>
</tr>
</tbody></table>
<p>&nbsp;</p>
<h2>Limits Approaching Infinity</h2>
<p>What is the limit of this function as x approaches infinity?</p>
<p class="center large">y = 2x</p>
<p>Obviously as "x" gets larger, so does "2x":</p>
<table style="border: 0; margin:auto;">
<tbody>
<tr style="text-align:right;">
<td style="width:100px;"><b>x</b></td>
<td style="width:100px;"><b>y=2x</b></td>
</tr>
<tr style="text-align:right;">
<td style="width:100px;">1</td>
<td style="width:100px;">2</td>
</tr>
<tr style="text-align:right;">
<td style="width:100px;">2</td>
<td style="width:100px;">4</td>
</tr>
<tr style="text-align:right;">
<td style="width:100px;">4</td>
<td style="width:100px;">8</td>
</tr>
<tr style="text-align:right;">
<td style="width:100px;">10</td>
<td style="width:100px;">20</td>
</tr>
<tr style="text-align:right;">
<td style="width:100px;">100</td>
<td style="width:100px;">200</td>
</tr>
<tr style="text-align:right;">
<td style="width:100px;">...</td>
<td style="width:100px;">...</td>
</tr>
</tbody></table>
<p>So as "x" approaches infinity, then "2x" also approaches infinity. We write this:</p>
<div class="center larger"><span class="lim"><em>lim</em><strong>x→∞</strong></span> 2x = ∞</div>
<p class="center80"><img src="../images/style/info.svg" style="float:left; margin: 0 10px 5px 0;" alt="info">
But don't be fooled by the "=". We cannot actually <b>get</b> to infinity, but in "limit" language the <b>limit is infinity</b> (which is really saying the function is limitless).</p>
<h2>Infinity and Degree</h2>
<p>We have seen two examples, one went to 0, the other went to infinity.</p>
<p>In fact many infinite limits are actually quite easy to work out, when we figure out "which way it is going", like this:</p>
<p class="center80"><img src="../images/style/zero.svg" style="float:left; margin: 0 10px 5px 0;" alt="zero" height="46" width="46">Functions like <b>1/x</b> approach <b>0</b> as x approaches infinity. This is also true for 1/x<sup>2</sup> etc</p>
<p class="center80"><img src="../images/style/up.svg" style="float:left; margin: 0 10px 5px 0;" alt="up" height="46" width="46">A function such as <b>x</b> will approach infinity, as well as <b>2x</b>, or <b>x/9</b> and so on. Likewise functions with <b>x<sup>2</sup></b> or <b>x<sup>3</sup></b> etc will also approach infinity.</p>
<p class="center80"><img src="../images/style/down.svg" style="float:left; margin: 0 10px 5px 0;" alt="down" height="46" width="46">But be careful, a function like "<b>x</b>" will approach "<b>infinity</b>", so we have to look at the signs of <b>x</b>.</p><br>
<div class="example">
<h3>Example: <b>2x<sup>2</sup>5x</b></h3>
<ul>
<li><b>2x<sup>2</sup></b> will head towards +infinity</li>
<li><b>5x</b> will head towards -infinity</li>
<li>But <b>x<sup>2</sup></b> grows more rapidly than <b>x</b>, so <b>2x<sup>2</sup>5x</b> will head towards +infinity</li>
</ul>
</div>
<p>In fact, when we look at the <a href="../algebra/degree-expression.html">Degree</a> of the function (the highest <a href="../exponent.html">exponent</a> in the function) we can tell what is going to happen:</p>
<p>When the Degree of the function is:</p>
<ul>
<li>greater than 0, the limit is <b>infinity</b> (or <b>infinity</b>)</li>
<li>less than 0, the limit is <b>0</b></li>
</ul>
<p>But if the <b>Degree is 0 or unknown</b> then we need to work a bit harder to find a limit.</p>
<h2>Rational Functions</h2>
<table style="border: 0; margin:auto;">
<tbody>
<tr>
<td style="text-align:right;">A <a href="../algebra/rational-expression.html">Rational Function</a> is one that is the ratio of two polynomials:</td>
<td style="width:20px;">&nbsp;</td>
<td>
<div class="center larger">f(x) = <span class="intbl"><em>P(x)</em><strong>Q(x)</strong></span></div>
<!-- f(x) = P(x)/Q(x) -->
</td>
</tr>
<tr>
<td style="text-align:right;">&nbsp;</td>
<td>&nbsp;</td>
<td>&nbsp;</td>
</tr>
<tr>
<td style="text-align:right;">For example, here <i><b>P(x) = x<sup>3 </sup>+ 2x 1</b></i>, and <i><b>Q(x) = 6x<sup>2</sup></b></i>:</td>
<td>&nbsp;</td>
<td>
<div class="center larger"><span class="intbl"><em>x<sup>3</sup> + 2x 1</em><strong>6x<sup>2</sup></strong></span></div>
<!---&minus; x^3~+2x&minus;1/6x^2 ---->
</td>
</tr>
</tbody></table>
<p>Following on from our idea of the <a href="../algebra/degree-expression.html">Degree of the Equation</a>, the first step to find the limit is to ...</p>
<h2>Compare the <b>Degree of P(x)</b> to the <b>Degree of Q(x)</b>:</h2>
<div class="dotpoint">If the Degree of P is less than the Degree of Q ...</div>
<p class="center large">... the limit is 0.</p>
<div class="dotpoint">If the Degree of P and Q are <b>the same</b> ...</div>
<p class="center large">... divide the coefficients of the <i>terms with the largest exponent</i>, like this:</p>
<div class="script">../algebra/images/degree-example.js?mode=lim53</div>
<div class="script">../algebra/images/degree-example.js?mode=lim4m2</div>
<p class="center">(note that the largest exponents are equal, as the degree is equal)</p>
<div class="dotpoint">If the Degree of P is greater than the Degree of Q ...</div>
<p class="center80"><img src="../images/style/up.svg" style="float:left; margin: 0 10px 5px 0;" alt="up" height="46" width="46">... then the limit is positive infinity ...</p>
<p class="center80"><img src="../images/style/down.svg" style="float:left; margin: 0 10px 5px 0;" alt="down" height="46" width="46">... or maybe negative infinity. <b>We need to look at the signs!</b></p>
<p>We can work out the sign (positive or negative) by looking at the signs of the <i>terms with the largest exponent</i>, just like how we found the coefficients above:</p>
<table style="border: 0; margin:auto;">
<tbody>
<tr>
<td>
<div class="center larger"><span class="intbl"><em>x<sup>3</sup> + 2x 1</em><strong>6x<sup>2</sup></strong></span></div>
<!---&minus; x^3~+2x&minus;1/6x^2 ----></td>
<td>&nbsp; </td>
<td>
<p>For example this will go to positive infinity, because both ...</p>
<ul>
<li>x<sup>3</sup> <i>(the term with the largest exponent in the top)</i> and</li>
<li>6x<sup>2</sup> <i>(the term with the largest exponent in the bottom)</i></li>
</ul> ... are positive.</td>
</tr>
<tr>
<td>&nbsp;</td>
<td>&nbsp;</td>
<td>&nbsp;</td>
</tr>
<tr>
<td>
<div class="center larger"><span class="intbl"><em>2x<sup>2</sup> + x</em><strong>5x 3</strong></span></div>
<!-- &minus;2x^2~+x/5x&minus;3 -->
</td>
<td>&nbsp;</td>
<td>But this will head for negative infinity, because 2/5 is negative.</td>
</tr>
</tbody></table>
<h2>A Harder Example: Working Out "e"</h2>
<p>This formula gets <b>closer</b> to the value of <a href="../numbers/e-eulers-number.html">e (Euler's number)</a> as <b>n increases</b>:</p>
<div class="center larger">(1 + <span class="intbl"><em>1</em><strong>n</strong></span>)<sup>n</sup></div>
<!---&minus; (1 + 1/n )^n ---->
<p>At infinity:</p>
<div class="center larger">(1 + <span class="intbl"><em>1</em><strong></strong></span> )<sup></sup> = ???</div>
<!---&minus; (1 + 1/INF )^INF = ??? ---->
<p class="center large">We don't know!</p>
<p>So instead of trying to work it out for infinity (because we can't get a sensible answer), let's try larger and larger values of n:</p>
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/graph-1-1-n-n.gif" alt="graph of (1+1/n)^n tends to e" height="218" width="357"></p>
<table style="border: 0; margin:auto;">
<tbody>
<tr style="text-align:right;">
<th width="100"><span class="large">n</span></th>
<th width="150"><span class="large">(1 + 1/n)<sup>n</sup></span></th>
</tr>
<tr style="text-align:right;">
<td style="width:100px;">1</td>
<td style="width:150px;">2.00000</td>
</tr>
<tr style="text-align:right;">
<td style="width:100px;">2</td>
<td style="width:150px;">2.25000</td>
</tr>
<tr style="text-align:right;">
<td style="width:100px;">5</td>
<td style="width:150px;">2.48832</td>
</tr>
<tr style="text-align:right;">
<td style="width:100px;">10</td>
<td style="width:150px;">2.59374</td>
</tr>
<tr style="text-align:right;">
<td style="width:100px;">100</td>
<td style="width:150px;">2.70481</td>
</tr>
<tr style="text-align:right;">
<td style="width:100px;">1,000</td>
<td style="width:150px;">2.71692</td>
</tr>
<tr style="text-align:right;">
<td style="width:100px;">10,000</td>
<td style="width:150px;">2.71815</td>
</tr>
<tr style="text-align:right;">
<td style="width:100px;">100,000</td>
<td style="width:150px;">2.71827</td>
</tr>
</tbody></table>
<div style="clear:both"></div>
<p>Yes, it is heading towards the value <b>2.71828...</b> which is <a href="../numbers/e-eulers-number.html">e (Euler's Number)</a></p>
<p>So again we have an odd situation:</p>
<ul>
<li>We don't know what the value is when n=infinity</li>
<li>But we can see that it settles towards 2.71828...</li>
</ul>
<p>So we use limits to write the answer like this:</p>
<div class="center larger"><span class="lim"><em>lim</em><strong>n→∞</strong></span> (1 + <span class="intbl"><em>1</em><strong>n</strong></span>)<sup>n</sup> = <i><b>e</b></i></div>
<!-- LIM[n-INF] (1 + 1/n )^n = e -->
<p>It is a mathematical way of saying <i>"we are not talking about when n=<span style="font-size: 20px; font-family: serif;"></span>, but we know as n gets bigger, the answer gets closer and closer to the value of <b>e</b>"</i>.</p>
<div class="center80">
<h3>Don't Do It The Wrong Way ... !</h3>
<p>If we try to use infinity as a "very large real number" (<i><b>it isn't!</b></i>) we get:</p>
<div class="center large">(1 + <span class="intbl"><em>1</em><strong></strong></span>)<sup></sup> = (1+0)<sup></sup> = 1<sup></sup> = 1
<img src="../images/style/no.svg" alt="not"> (Wrong!)
</div>
<!---&minus; (1 + 1/INF )^INF = (1+0)^INF = (1)^INF = 1 ---->
<p>So don't try using Infinity as a real number: you can get <b>wrong answers</b>!</p>
<p>Limits are the right way to go.</p>
</div>
<h2>Evaluating Limits</h2>
<p>I have taken a gentle approach to limits so far, and shown tables and graphs to illustrate the points.</p>
<p>But to "evaluate" (in other words calculate) the value of a limit can take a bit more effort. Find out more at <a href="limits-evaluating.html">Evaluating Limits</a>.</p>
<p>&nbsp;</p>
<div class="questions">6780, 6781, 6782, 6783, 6784, 6785, 6786, 6787, 6788, 6789</div>
<div class="related">
<a href="limits.html">Limits (An Introduction)</a>
<a href="index.html">Calculus Index</a>
</div>
<!-- #EndEditable -->
</article>
<div id="adend" class="centerfull noprint"></div>
<footer id="footer" class="centerfull noprint"></footer>
<div id="copyrt">Copyright © 2021 MathsIsFun.com</div>
</div>
</body><!-- #EndTemplate -->
<!-- Mirrored from www.mathsisfun.com/calculus/limits-infinity.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:48:57 GMT -->
</html>