Lucas Kent e39465ad2f Changes to be committed:
new file:   Files/flashplayer_32_sa.exe
	new file:   favicon.ico
	new file:   globe.gif
	new file:   imgs/download.png
	new file:   imgs/zuck.jpg
	new file:   index.html
	new file:   other.ico
	new file:   script.js
	new file:   site.webmanifest
	new file:   sitemap.html
	new file:   styles/backround.css
	new file:   styles/border.css
	new file:   styles/fonts/Titillium_Web/OFL.txt
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf
	new file:   styles/fonts/webfontkit-20221027-163353/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2
	new file:   styles/fonts/webfontkit-20221027-165950/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2
	new file:   styles/style.css
	new file:   tools/2048/.gitignore
	new file:   tools/2048/.jshintrc
	new file:   tools/2048/CONTRIBUTING.md
	new file:   tools/2048/LICENSE.txt
	new file:   tools/2048/README.md
	new file:   tools/2048/Rakefile
	new file:   tools/2048/favicon.ico
	new file:   tools/2048/index.html
	new file:   tools/2048/js/animframe_polyfill.js
	new file:   tools/2048/js/application.js
	new file:   tools/2048/js/bind_polyfill.js
	new file:   tools/2048/js/classlist_polyfill.js
	new file:   tools/2048/js/game_manager.js
	new file:   tools/2048/js/grid.js
	new file:   tools/2048/js/html_actuator.js
	new file:   tools/2048/js/keyboard_input_manager.js
	new file:   tools/2048/js/local_storage_manager.js
	new file:   tools/2048/js/tile.js
    new file:   tools/2048/meta/apple-touch-icon.png
	new file:   tools/webretro/cores/neocd_libretro.js
	new file:   tools/webretro/cores/neocd_libretro.wasm
	new file:   tools/webretro/cores/nestopia_libretro.js
	new file:   tools/webretro/cores/nestopia_libretro.wasm
	new file:   tools/webretro/cores/o2em_libretro.js
	new file:   tools/webretro/cores/o2em_libretro.wasm
	new file:   tools/webretro/cores/opera_libretro.js
	new file:   tools/webretro/cores/opera_libretro.wasm
2022-11-02 08:40:01 -04:00

209 lines
11 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html lang="en"><!-- #BeginTemplate "/Templates/Advanced.dwt" --><!-- DW6 -->
<!-- Mirrored from www.mathsisfun.com/calculus/l-hopitals-rule.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:48:57 GMT -->
<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
<!-- #BeginEditable "doctitle" -->
<title>L'Hopital's Rule</title>
<meta name="description" content="Math explained in easy language, plus puzzles, games, quizzes, videos and worksheets. For K-12 kids, teachers and parents.">
<style>
.lim {
display: inline-table;
text-align: center;
vertical-align: middle;
margin: 0 4px 0 2px;
border-collapse: collapse;
}
.lim em {
display: table-row;
text-align: center;
font-style: inherit;
}
.lim strong {
display: table-row;
text-align: center;
font-weight: inherit;
font-size: 80%;
line-height: 9px;
}
</style>
<!-- #EndEditable -->
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
<meta name="HandheldFriendly" content="true">
<meta name="referrer" content="always">
<link rel="preload" href="../images/style/font-champ-bold.ttf" as="font" type="font/ttf" crossorigin="">
<link rel="preload" href="../style4.css" as="style">
<link rel="preload" href="../main4.js" as="script">
<link rel="stylesheet" href="../style4.css">
<script src="../main4.js" defer="defer"></script>
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async="" src="https://www.googletagmanager.com/gtag/js?id=UA-29771508-1"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'UA-29771508-1');
</script>
</head>
<body id="bodybg" class="adv">
<div id="stt"></div>
<div id="adTop"></div>
<header>
<div id="hdr"></div>
<div id="tran"></div>
<div id="adHide"></div>
<div id="cookOK"></div>
</header>
<div class="mid">
<nav>
<div id="menuWide" class="menu"></div>
<div id="logo"><a href="../index.html"><img src="../images/style/logo-adv.svg" alt="Math is Fun Advanced"></a></div>
<div id="search" role="search"></div>
<div id="linkto"></div>
<div id="menuSlim" class="menu"></div>
<div id="menuTiny" class="menu"></div>
</nav>
<div id="extra"></div>
<article id="content" role="main">
<!-- #BeginEditable "Body" -->
<h1 class="center">L'Hôpital's Rule</h1>
<p><span class="center">L'Hôpital's Rule</span> can help us calculate a <a href="limits.html">limit</a> that may otherwise be hard or impossible.</p>
<div class="words">
<p><span class="center">L'Hôpital is pronounced "lopital"</span>. He was a French mathematician from the 1600s.</p>
</div>
<p>&nbsp;</p>
<p>It says that the <b>limit</b> when we divide one function by another is the same after we take the <a href="derivatives-introduction.html">derivative</a> of each function (with some special conditions shown later).</p>
<p>In symbols we can write:</p>
<p class="center large"><span class="lim"><em>lim</em><strong>x→c</strong></span><span class="intbl"><em>f(x)</em><strong>g(x)</strong></span> = <span class="lim"><em>lim</em><strong>x→c</strong></span><span class="intbl"><em>f(x)</em><strong>g(x)</strong></span></p>
<!-- limx->c f(x)/g(x) = limx->c f'(x)/g'(x) -->
<p class="center"><i>The limit as x approaches c of "f-ofx over g-ofx" equals the<br>
the limit as x approaches c of "f-dash-ofx over g-dash-ofx"</i></p>
<p>All we did is add that little dash mark <span class="hilite">&nbsp;&nbsp;</span> on each function, which means to take the derivative.</p>
<div class="example">
<h3>Example:
<div class="center large"><span class="lim"><em>lim</em><strong>x→2</strong></span><span class="intbl"><em>x<sup>2</sup>+x6</em><strong>x<sup>2</sup>4</strong></span></div>
<!-- limx->2 x^2~+x&minus;6/x^2~&minus;4 --></h3>
<p>At <b>x=2</b> we would normally get:</p>
<p class="center large"><span class="intbl"><em>2<sup>2</sup>+26</em><strong>2<sup>2</sup>4</strong></span> = <span class="intbl"><em>0</em><strong>0</strong></span></p>
<!---&minus; 2^2~+2&minus;6/2^2~&minus;4 = 0/0 ---->
<p>Which is <a href="../numbers/dividing-by-zero.html">indeterminate</a>, so we are stuck. Or are we?</p>
<p>Let's try <span class="center">L'Hôpita</span>l!</p>
<p>Differentiate both top and bottom (see <a href="derivatives-rules.html">Derivative Rules</a>):</p>
<p class="center large"><span class="lim"><em>lim</em><strong>x→2</strong></span><span class="intbl"><em>x<sup>2</sup>+x6</em><strong>x<sup>2</sup>4</strong></span> = <span class="lim"><em>lim</em><strong>x→2</strong></span><span class="intbl"><em>2x+10</em><strong>2x0</strong></span></p>
<!-- limx->2 x^2~+x&minus;6/x^2~&minus;4 = limx->2 2x+1-0/2x-0 -->
<p>Now we just substitute <b>x=2</b> to get our answer:</p>
<p class="center large"><span class="lim"><em>lim</em><strong>x→2</strong></span><span class="intbl"><em>2x+10</em><strong>2x0</strong></span> = <span class="intbl"><em>5</em><strong>4</strong></span></p>
<!-- limx->2 2x+1-0/2x-0 = 5/4 -->
<p>Here is the graph, notice the "hole" at x=2:</p>
<p class="center"><img src="images/x2pxm6etc.svg" alt="(x^2+x-6)/(x^2-4)" height="330" width="570"></p>
<p><i>Note: we can also get this answer by factoring, see <a href="limits-evaluating.html">Evaluating Limits</a></i>.</p>
</div>
<!-- limx->2 x^2~+x&minus;6/x^2~&minus;4 = limx->2 2x+1-0/2x-0 = 5/4 -->
<div class="example">
<h3>Example:
<div class="center large"><span class="lim"><em>lim</em><strong>x→∞</strong></span><span class="intbl"><em>e<sup>x</sup></em><strong>x<sup>2</sup></strong></span></div>
<!-- limx->INF e^x/x^2 --></h3>
<p>Normally this is the result:</p>
<p class="center large"><span class="lim"><em>lim</em><strong>x→∞</strong></span><span class="intbl"><em>e<sup>x</sup></em><strong>x<sup>2</sup></strong></span> = <span class="intbl"><em></em><strong></strong></span></p>
<!-- limx->INF e^x/x^2 = INF/INF -->
<p>Both head to infinity. Which is indeterminate.</p>
<p>But let's differentiate both top and bottom (note that the derivative of e<sup>x</sup> is e<sup>x</sup>):</p>
<p class="center large"><span class="lim"><em>lim</em><strong>x→∞</strong></span><span class="intbl"><em>e<sup>x</sup></em><strong>x<sup>2</sup></strong></span> = <span class="lim"><em>lim</em><strong>x→∞</strong></span><span class="intbl"><em>e<sup>x</sup></em><strong>2x</strong></span></p>
<!-- limx->INF e^x/x^2 = limx->INF e^x/2x -->
<p>Hmmm, still not solved, both tending towards infinity. But we can use it again:</p>
<p class="center large"><span class="lim"><em>lim</em><strong>x→∞</strong></span><span class="intbl"><em>e<sup>x</sup></em><strong>x<sup>2</sup></strong></span> = <span class="lim"><em>lim</em><strong>x→∞</strong></span><span class="intbl"><em>e<sup>x</sup></em><strong>2x</strong></span> = <span class="lim"><em>lim</em><strong>x→∞</strong></span><span class="intbl"><em>e<sup>x</sup></em><strong>2</strong></span></p>
<p><!-- limx->INF e^x/x^2 = limx->INF e^x/2x = limx->INF e^x/2 -->
Now we have:</p>
<p class="center large"><span class="lim"><em>lim</em><strong>x→∞</strong></span><span class="intbl"><em>e<sup>x</sup></em><strong>2</strong></span> = ∞</p>
<!-- limx->INF e^x/2 = INF/0 = INF -->
<p>It has shown us that e<sup>x</sup> grows much faster than x<sup>2</sup>.</p>
</div>
<h2>Cases</h2>
<p>We have already seen a <span class="intbl"><em>0</em><strong>0</strong></span> and <span class="intbl"><em></em><strong></strong></span> example. Here are all the indeterminate forms that <span class="center">L'Hopital's Rule</span> may be able to help with:</p>
<p class="center large"><span class="intbl"><em>0</em><strong>0</strong></span> &nbsp; &nbsp; <span class="intbl"><em></em><strong></strong></span> &nbsp; &nbsp; 0×&nbsp; &nbsp; 1<sup></sup> &nbsp; &nbsp; 0<sup>0</sup> &nbsp; &nbsp;<sup>0</sup> &nbsp; &nbsp; ∞−∞</p>
<!-- 0/0 &nbsp; INF/INF &nbsp; 0*INF &nbsp; 1^INF &nbsp; 0^0 &nbsp; INF^0 &nbsp; INF-INF -->
<h2 id="cond">Conditions</h2>
<h3>Differentiable</h3>
<p>For a limit approaching c, the original functions must be differentiable either side of c, but not necessarily at c.</p>
<p>Likewise g(x) is not equal to zero either side of c.</p>
<h3>The Limit Must Exist</h3>
This limit must exist:
<p class="center large"><span class="lim"><em>lim</em><strong>x→c</strong></span><span class="intbl"><em>f(x)</em><strong>g(x)</strong></span></p>
<!-- limx->c f'(x)/g'(x) -->
<p>Why? Well a good example is functions that never settle to a value.</p>
<div class="example">
<h3>Example:
<div class="center large"><span class="lim"><em>lim</em><strong>x→∞</strong></span><span class="intbl"><em>x+cos(x)</em><strong>x</strong></span></div>
<!-- limx->INF x+cos(x)/x --></h3>
<p>Which is a <span class="intbl"><em></em><strong></strong></span> case. Let's differentiate top and bottom:</p>
<p class="center large"><span class="lim"><em>lim</em><strong>x→∞</strong></span><span class="intbl"><em>1sin(x)</em><strong>1</strong></span></p>
<!-- limx->INF 1-sin(x)/1 -->
<p>And because it just wiggles up and down it never approaches any value.</p>
<p>So that new limit does not exist!</p>
<p><b>And so <span class="center">L'Hôpita</span>l's Rule is not usable in this case.</b></p>
<p>BUT we can do this:</p>
<p class="center large"><span class="lim"><em>lim</em><strong>x→∞</strong></span><span class="intbl"><em>x+cos(x)</em><strong>x</strong></span> = <span class="lim"><em>lim</em><strong>x→∞</strong></span>(1 + <span class="intbl"><em>cos(x)</em><strong>x</strong></span>)</p>
<!-- limx->INF x+cos(x)/x = limx->INF (1 + cos(x)/x ) = 1 -->
<p>As x goes to infinity then <span class="intbl"><em>cos(x)</em><strong>x</strong></span> tends to between <span class="intbl"><em>1</em><strong></strong></span> and <span class="intbl"><em>+1</em><strong></strong></span>, and both tend to zero.</p>
<p>And we are left with just the "1", so:</p>
<p class="center large"><span class="lim"><em>lim</em><strong>x→∞</strong></span><span class="intbl"><em>x+cos(x)</em><strong>x</strong></span> = <span class="lim"><em>lim</em><strong>x→∞</strong></span>(1 + <span class="intbl"><em>cos(x)</em><strong>x</strong></span>) = 1</p>
<!-- limx->INF x+cos(x)/x = limx->INF (1 + cos(x)/x ) = 1 -->
</div>
<p>&nbsp;</p>
<div class="related">
<a href="limits.html">Limits (An Introduction)</a>
<a href="index.html">Calculus Index</a>
</div>
<!-- #EndEditable -->
</article>
<div id="adend" class="centerfull noprint"></div>
<footer id="footer" class="centerfull noprint"></footer>
<div id="copyrt">Copyright © 2021 MathsIsFun.com</div>
</div>
</body><!-- #EndTemplate -->
<!-- Mirrored from www.mathsisfun.com/calculus/l-hopitals-rule.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:48:57 GMT -->
</html>