Lucas Kent e39465ad2f Changes to be committed:
new file:   Files/flashplayer_32_sa.exe
	new file:   favicon.ico
	new file:   globe.gif
	new file:   imgs/download.png
	new file:   imgs/zuck.jpg
	new file:   index.html
	new file:   other.ico
	new file:   script.js
	new file:   site.webmanifest
	new file:   sitemap.html
	new file:   styles/backround.css
	new file:   styles/border.css
	new file:   styles/fonts/Titillium_Web/OFL.txt
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf
	new file:   styles/fonts/webfontkit-20221027-163353/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2
	new file:   styles/fonts/webfontkit-20221027-165950/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2
	new file:   styles/style.css
	new file:   tools/2048/.gitignore
	new file:   tools/2048/.jshintrc
	new file:   tools/2048/CONTRIBUTING.md
	new file:   tools/2048/LICENSE.txt
	new file:   tools/2048/README.md
	new file:   tools/2048/Rakefile
	new file:   tools/2048/favicon.ico
	new file:   tools/2048/index.html
	new file:   tools/2048/js/animframe_polyfill.js
	new file:   tools/2048/js/application.js
	new file:   tools/2048/js/bind_polyfill.js
	new file:   tools/2048/js/classlist_polyfill.js
	new file:   tools/2048/js/game_manager.js
	new file:   tools/2048/js/grid.js
	new file:   tools/2048/js/html_actuator.js
	new file:   tools/2048/js/keyboard_input_manager.js
	new file:   tools/2048/js/local_storage_manager.js
	new file:   tools/2048/js/tile.js
    new file:   tools/2048/meta/apple-touch-icon.png
	new file:   tools/webretro/cores/neocd_libretro.js
	new file:   tools/webretro/cores/neocd_libretro.wasm
	new file:   tools/webretro/cores/nestopia_libretro.js
	new file:   tools/webretro/cores/nestopia_libretro.wasm
	new file:   tools/webretro/cores/o2em_libretro.js
	new file:   tools/webretro/cores/o2em_libretro.wasm
	new file:   tools/webretro/cores/opera_libretro.js
	new file:   tools/webretro/cores/opera_libretro.wasm
2022-11-02 08:40:01 -04:00

282 lines
12 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html lang="en"><!-- #BeginTemplate "/Templates/Advanced.dwt" --><!-- DW6 -->
<!-- Mirrored from www.mathsisfun.com/calculus/integration-rules.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:38:52 GMT -->
<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
<!-- #BeginEditable "doctitle" -->
<title>Integration Rules</title>
<meta name="description" content="Math explained in easy language, plus puzzles, games, quizzes, worksheets and a forum. For K-12 kids, teachers and parents.">
<!-- #EndEditable -->
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
<meta name="HandheldFriendly" content="true">
<meta name="referrer" content="always">
<link rel="preload" href="../images/style/font-champ-bold.ttf" as="font" type="font/ttf" crossorigin="">
<link rel="preload" href="../style4.css" as="style">
<link rel="preload" href="../main4.js" as="script">
<link rel="stylesheet" href="../style4.css">
<script src="../main4.js" defer="defer"></script>
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async="" src="https://www.googletagmanager.com/gtag/js?id=UA-29771508-1"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'UA-29771508-1');
</script>
</head>
<body id="bodybg" class="adv">
<div id="stt"></div>
<div id="adTop"></div>
<header>
<div id="hdr"></div>
<div id="tran"></div>
<div id="adHide"></div>
<div id="cookOK"></div>
</header>
<div class="mid">
<nav>
<div id="menuWide" class="menu"></div>
<div id="logo"><a href="../index.html"><img src="../images/style/logo-adv.svg" alt="Math is Fun Advanced"></a></div>
<div id="search" role="search"></div>
<div id="linkto"></div>
<div id="menuSlim" class="menu"></div>
<div id="menuTiny" class="menu"></div>
</nav>
<div id="extra"></div>
<article id="content" role="main">
<!-- #BeginEditable "Body" -->
<h1 class="center">Integration Rules</h1>
<h2>Integration</h2>
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/integral-area.gif" alt="integral area" height="171" width="195"></p>
<p><a href="integration-introduction.html">Integration</a> can be used to find areas, volumes, central points and many useful things. It is often used to find the <b>area underneath the graph of a function and the x-axis</b>.</p>
<p>The first rule to know is that integrals and <a href="derivatives-introduction.html">derivatives</a> are opposites!</p>
<p class="center"><img src="images/integral-vs-derivative.svg" alt="integral vs derivative" height="122" width="222"><br>
Sometimes we can work out an integral,<br>
because we know a matching derivative.</p>
<h3>Integration Rules</h3>
<p>Here are the most useful rules, with <a href="#examples">examples below</a>:</p>
<div class="beach">
<table style="border: 0; margin:auto;">
<tbody>
<tr>
<th>Common Functions</th>
<th align="center" width="130">Function</th>
<th align="center" width="130">Integral</th>
</tr>
<tr>
<td>Constant</td>
<td style="text-align:center;"><span class="int"></span>a dx</td>
<td style="text-align:center;">ax + C</td>
</tr>
<tr>
<td>Variable</td>
<td style="text-align:center;"><span class="int"></span>x dx</td>
<td style="text-align:center;">x<sup>2</sup>/2 + C</td>
</tr>
<tr>
<td>Square</td>
<td style="text-align:center;"><span class="int"></span>x<sup>2</sup> dx</td>
<td style="text-align:center;">x<sup>3</sup>/3 + C</td>
</tr>
<tr>
<td>Reciprocal</td>
<td style="text-align:center;"><span class="int"></span>(1/x) dx</td>
<td style="text-align:center;">ln|x| + C</td>
</tr>
<tr>
<td>Exponential</td>
<td style="text-align:center;"><span class="int"></span>e<sup>x</sup> dx</td>
<td style="text-align:center;">e<sup>x</sup> + C</td>
</tr>
<tr>
<td>&nbsp;</td>
<td style="text-align:center;"><span class="int"></span>a<sup>x</sup> dx</td>
<td style="text-align:center;">a<sup>x</sup>/ln(a) + C</td>
</tr>
<tr>
<td>&nbsp;</td>
<td style="text-align:center;"><span class="int"></span>ln(x) dx</td>
<td style="text-align:center;">x ln(x) x + C</td>
</tr>
<tr>
<td>Trigonometry (x in <a href="../geometry/radians.html">radians</a>)</td>
<td style="text-align:center;"><span class="int"></span>cos(x) dx</td>
<td style="text-align:center;">sin(x) + C</td>
</tr>
<tr>
<td>&nbsp;</td>
<td style="text-align:center;"><span class="int"></span>sin(x) dx</td>
<td style="text-align:center;">-cos(x) + C</td>
</tr>
<tr>
<td>&nbsp;</td>
<td style="text-align:center;"><span class="int"></span>sec<sup>2</sup>(x) dx</td>
<td style="text-align:center;">tan(x) + C</td>
</tr>
<tr>
<td>&nbsp;</td>
<td style="text-align:center;">&nbsp;</td>
<td style="text-align:center;">&nbsp;</td>
</tr>
<tr>
<th>Rules</th>
<th align="center">Function<br>
</th>
<th align="center">Integral<br>
</th>
</tr>
<tr>
<td>Multiplication by constant</td>
<td style="text-align:center;"><span class="int"></span>cf(x) dx</td>
<td style="text-align:center;">c<span class="int"></span>f(x) dx</td>
</tr>
<tr>
<td>Power Rule (n≠1)</td>
<td style="text-align:center;"><span class="int"></span>x<sup>n</sup> dx</td>
<td style="text-align:center;"><span class="intbl"><em>x<sup>n+1</sup></em><strong>n+1</strong></span> + C</td>
</tr>
<tr>
<td>Sum Rule</td>
<td style="text-align:center;"><span class="int"></span>(f + g) dx</td>
<td style="text-align:center;"><span class="int"></span>f dx + <span class="int"></span>g dx</td>
</tr>
<tr>
<td>Difference Rule</td>
<td style="text-align:center;"><span class="int"></span>(f - g) dx</td>
<td style="text-align:center;"><span class="int"></span>f dx - <span class="int"></span>g dx</td>
</tr>
<tr>
<td>Integration by Parts</td>
<td colspan="2" align="center">See <a href="integration-by-parts.html">Integration by Parts</a></td>
</tr>
<tr>
<td>Substitution Rule</td>
<td colspan="2" align="center">See <span class="center"><a href="integration-by-substitution.html">Integration by Substitution</a></span></td>
</tr>
</tbody></table>
</div>
<h2><a name="examples"></a>Examples</h2>
<div class="example">
<h3>Example: what is the integral of sin(x) ?</h3>
<p>From the table above it is listed as being <b>cos(x) + C</b></p>
<p>It is written as:</p>
<p class="center large"><span class="int"></span>sin(x) dx = cos(x) + C</p>
</div>
<div class="example">
<h3>Example: what is the integral of 1/x ?</h3>
<p>From the table above it is listed as being <b>ln|x| + C</b></p>
<p>It is written as:</p>
<p class="center large"><span class="int"></span>(1/x) dx = ln|x| + C</p>
<p>The vertical bars <b>||</b> either side of <b>x</b> mean <a href="../numbers/absolute-value.html">absolute value</a>, because we don't want to give negative values to the <a href="../sets/function-logarithmic.html">natural logarithm</a> function <b>ln</b>.</p>
</div>
<h3>Power Rule</h3>
<div class="example">
<h3>Example: What is <span class="int"></span>x<sup>3</sup> dx ?</h3>
<p>The question is asking "what is the integral of x<sup>3 </sup>?"</p>
<p>We can use the Power Rule, where n=3:</p>
<p class="center large"><span class="int"></span>x<sup>n</sup> dx = <span class="intbl"><em>x<sup>n+1</sup></em><strong>n+1</strong></span> + C</p>
<p class="center large"><span class="int"></span>x<sup>3 </sup>dx = <span class="intbl"><em>x<sup>4</sup></em><strong>4</strong></span> + C</p>
</div>
<div class="example">
<h3>Example: What is <span class="int"></span>√x dx ?</h3>
<p>√x is also <b>x<sup>0.5</sup></b></p>
<p>We can use the Power Rule, where n=0.5:</p>
<p class="center large"><span class="int"></span>x<sup>n</sup> dx = <span class="intbl"><em>x<sup>n+1</sup></em><strong>n+1</strong></span> + C</p>
<p class="center large"><span class="int"></span>x<sup>0.5</sup> dx = <span class="intbl"><em>x<sup>1.5</sup></em><strong>1.5</strong></span> + C</p>
</div>
<h3>Multiplication by constant</h3>
<div class="example">
<h3>Example: What is <span class="int"></span>6x<sup>2</sup> dx ?</h3>
<p>We can move the 6 outside the integral:</p>
<p class="center large"><span class="int"></span>6x<sup>2</sup> dx = 6<span class="int"></span>x<sup>2</sup> dx</p>
<p>And now use the Power Rule on <span class="center large">x<sup>2</sup></span>:</p>
<p class="center large">= 6 <span class="intbl"><em>x<sup>3</sup></em><strong>3</strong></span> + C</p>
<p>Simplify:</p>
<p class="center large">= 2x<sup>3</sup> + C</p>
</div>
<h3>Sum Rule</h3>
<div class="example">
<h3>Example: What is <span class="int"></span>(cos x + x) dx ?</h3>
<p>Use the Sum Rule:</p>
<p class="center large"><span class="int"></span>(cos x + x) dx = <span class="int"></span>cos x dx + <span class="int"></span>x dx</p>
<p>Work out the integral of each (using table above):</p>
<p class="center large">= sin x + x<sup>2</sup>/2 + C</p>
</div>
<h3>Difference Rule</h3>
<div class="example">
<h3>Example: What is <span class="int"></span>(e<sup>w</sup> 3) dw ?</h3>
<p>Use the Difference Rule:</p>
<p class="center large"><span class="int"></span>(e<sup>w</sup> 3) dw =<span class="int"></span>e<sup>w</sup> dw <span class="int"></span>3 dw</p>
<p>Then work out the integral of each (using table above):</p>
<p class="center large">= e<sup>w</sup> 3w + C</p>
</div>
<h3>Sum, Difference, Constant Multiplication And Power Rules</h3>
<div class="example">
<h3>Example: What is <span class="int"></span>(8z + 4z<sup>3</sup> 6z<sup>2</sup>) dz ?</h3>
<p>Use the Sum and Difference Rule:</p>
<p class="center large"><span class="int"></span>(8z + 4z<sup>3</sup> 6z<sup>2</sup>) dz =<span class="int"></span>8z dz + <span class="int"></span>4z<sup>3</sup> dz <span class="int"></span>6z<sup>2</sup> dz</p>
<p>Constant Multiplication:</p>
<p class="center large">= 8<span class="int"></span>z dz + 4<span class="int"></span>z<sup>3</sup> dz 6<span class="int"></span>z<sup>2</sup> dz</p>
<p>Power Rule:</p>
<p class="center large">= 8z<sup>2</sup>/2 + 4z<sup>4</sup>/4 6z<sup>3</sup>/3 + C</p>
<p>Simplify:</p>
<p class="center large">= 4z<sup>2</sup> + z<sup>4</sup> 2z<sup>3</sup> + C</p>
</div>
<h3>Integration by Parts</h3>
<p>See <a href="integration-by-parts.html">Integration by Parts</a></p>
<h3>Substitution Rule</h3>
<p>See <span class="center"><a href="integration-by-substitution.html">Integration by Substitution</a></span></p>
<p>&nbsp;</p>
<h2>Final Advice</h2>
<ul>
<li>Get plenty of practice</li>
<li>Don't forget the <b>dx</b> (or dz, etc)</li>
<li>Don't forget the <b>+ C</b></li>
</ul>
<p>&nbsp;</p>
<div class="questions">6834, 6835, 6836, 6837, 6838, 6839, 6840, 6841, 6842, 6843</div>
<div class="related">
<a href="integration-introduction.html">Integration</a>
<a href="index.html">Calculus Index</a>
</div>
<!-- #EndEditable -->
</article>
<div id="adend" class="centerfull noprint"></div>
<footer id="footer" class="centerfull noprint"></footer>
<div id="copyrt">Copyright © 2021 MathsIsFun.com</div>
</div>
</body><!-- #EndTemplate -->
<!-- Mirrored from www.mathsisfun.com/calculus/integration-rules.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:38:52 GMT -->
</html>