new file: Files/flashplayer_32_sa.exe new file: favicon.ico new file: globe.gif new file: imgs/download.png new file: imgs/zuck.jpg new file: index.html new file: other.ico new file: script.js new file: site.webmanifest new file: sitemap.html new file: styles/backround.css new file: styles/border.css new file: styles/fonts/Titillium_Web/OFL.txt new file: styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf new file: styles/fonts/webfontkit-20221027-163353/generator_config.txt new file: styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css new file: styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css new file: styles/fonts/webfontkit-20221027-163353/stylesheet.css new file: styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html new file: styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff new file: styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2 new file: styles/fonts/webfontkit-20221027-165950/generator_config.txt new file: styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css new file: styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css new file: styles/fonts/webfontkit-20221027-165950/stylesheet.css new file: styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html new file: styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff new file: styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2 new file: styles/style.css new file: tools/2048/.gitignore new file: tools/2048/.jshintrc new file: tools/2048/CONTRIBUTING.md new file: tools/2048/LICENSE.txt new file: tools/2048/README.md new file: tools/2048/Rakefile new file: tools/2048/favicon.ico new file: tools/2048/index.html new file: tools/2048/js/animframe_polyfill.js new file: tools/2048/js/application.js new file: tools/2048/js/bind_polyfill.js new file: tools/2048/js/classlist_polyfill.js new file: tools/2048/js/game_manager.js new file: tools/2048/js/grid.js new file: tools/2048/js/html_actuator.js new file: tools/2048/js/keyboard_input_manager.js new file: tools/2048/js/local_storage_manager.js new file: tools/2048/js/tile.js new file: tools/2048/meta/apple-touch-icon.png new file: tools/webretro/cores/neocd_libretro.js new file: tools/webretro/cores/neocd_libretro.wasm new file: tools/webretro/cores/nestopia_libretro.js new file: tools/webretro/cores/nestopia_libretro.wasm new file: tools/webretro/cores/o2em_libretro.js new file: tools/webretro/cores/o2em_libretro.wasm new file: tools/webretro/cores/opera_libretro.js new file: tools/webretro/cores/opera_libretro.wasm
163 lines
8.4 KiB
HTML
163 lines
8.4 KiB
HTML
<!DOCTYPE html>
|
|
<html lang="en"><!-- #BeginTemplate "/Templates/Advanced.dwt" --><!-- DW6 -->
|
|
|
|
<!-- Mirrored from www.mathsisfun.com/calculus/integration-by-substitution.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:49:12 GMT -->
|
|
<head>
|
|
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
|
|
|
|
|
|
<!-- #BeginEditable "doctitle" -->
|
|
<title>Integration by Substitution</title>
|
|
<meta name="description" content="Math explained in easy language, plus puzzles, games, quizzes, worksheets and a forum. For K-12 kids, teachers and parents.">
|
|
<!-- #EndEditable -->
|
|
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
|
|
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
|
|
<meta name="HandheldFriendly" content="true">
|
|
<meta name="referrer" content="always">
|
|
<link rel="stylesheet" href="../style4.css">
|
|
<script src="../main4.js"></script>
|
|
<script>document.write(gTagHTML())</script>
|
|
</head>
|
|
|
|
<body id="bodybg" class="adv">
|
|
|
|
<div id="stt"></div>
|
|
<div id="adTop"></div>
|
|
<header>
|
|
<div id="hdr"></div>
|
|
<div id="tran"></div>
|
|
<div id="adHide"></div>
|
|
<div id="cookOK"></div>
|
|
</header>
|
|
|
|
<div class="mid">
|
|
|
|
<nav>
|
|
<div id="menuWide" class="menu"></div>
|
|
<div id="logo"><a href="../index.html"><img src="../images/style/logo-adv.svg" alt="Math is Fun"></a></div>
|
|
|
|
<div id="search" role="search"></div>
|
|
<div id="linkto"></div>
|
|
|
|
<div id="menuSlim" class="menu"></div>
|
|
<div id="menuTiny" class="menu"></div>
|
|
</nav>
|
|
|
|
<div id="extra"></div>
|
|
|
|
<article id="content" role="main">
|
|
|
|
<!-- #BeginEditable "Body" -->
|
|
|
|
<h1 class="center">Integration by Substitution</h1>
|
|
|
|
<p>"Integration by Substitution" (also called "u-Substitution" or "The Reverse Chain Rule") is a method to find an <a href="integration-introduction.html">integral</a>, but only when it can be set up in a special way.</p>
|
|
<p>The first and most vital step is to be able to write our integral in this form:</p>
|
|
<p class="center"><img src="images/integral-subs-1.svg" alt="integration by substitution general"><br>
|
|
Note that we have <b>g(x)</b> and its <a href="derivatives-introduction.html">derivative</a> <b>g'(x)</b></p>
|
|
<p>Like in this example:</p>
|
|
<p class="center">
|
|
<img src="images/integral-subs-cos-x2-2x-a.svg" alt="integration by substitution cos(x^2) 2x dx"><br>
|
|
|
|
Here <b>f=cos</b>, and we have <b>g=x<sup>2</sup></b> and its derivative <b>2x</b><br>
|
|
This integral is good to go!</p>
|
|
<p>When our integral is set up like that, we can do <b>this substitution</b>:</p>
|
|
<p class="center"><img src="images/integral-subs-2.svg" alt="integration by substitution general"></p>
|
|
<p>Then we can <b>integrate f(u)</b>, and finish by <b>putting g(x) back as u</b>.</p>
|
|
<p>Like this:</p>
|
|
<div class="example">
|
|
<h3>Example: <span style="font-size:150%;">∫</span>cos(x<sup>2</sup>) 2x dx</h3>
|
|
<p>We know (from above) that it is in the right form to do the substitution:</p>
|
|
<p class="center"><img src="images/integral-subs-3.svg" alt="integration by substitution cos(x^2) 2x dx"></p>
|
|
<p>Now integrate:</p>
|
|
<p class="center larger"><span style="font-size:150%;">∫</span>cos(u) du = sin(u) + C</p>
|
|
<p>And finally put <b>u=x<sup>2</sup></b> back again:</p>
|
|
<p class="center larger">sin(x<sup>2</sup>) + C</p>
|
|
</div>
|
|
<p>So <span style="font-size:150%;"><b>∫</b></span><b>cos(x<sup>2</sup>) 2x dx = sin(x<sup>2</sup>) + C</b></p>
|
|
<p>That worked out really nicely! (Well, I knew it would.)</p>
|
|
<p>But this method only works on <i>some</i> integrals of course, and it may need rearranging:</p>
|
|
<div class="example">
|
|
<h3>Example: <span style="font-size:150%;">∫</span>cos(x<sup>2</sup>) 6x dx</h3>
|
|
<p>Oh no! It is <b>6x</b>, not <b>2x</b> like before. Our perfect setup is gone.</p>
|
|
<p>Never fear! Just rearrange the integral like this:</p>
|
|
<p class="center larger"><span style="font-size:150%;">∫</span>cos(x<sup>2</sup>) 6x dx = 3<span style="font-size:150%;">∫</span>cos(x<sup>2</sup>) 2x dx</p>
|
|
<p>(We can pull constant multipliers outside the integration, see <a href="integration-rules.html">Rules of Integration</a>.)</p>
|
|
<p>Then go ahead as before:</p>
|
|
<p class="center larger">3<span style="font-size:150%;">∫</span>cos(u) du = 3 sin(u) + C</p>
|
|
<p>Now put <b>u=x<sup>2</sup></b> back again:</p>
|
|
<p class="center larger">3 sin(x<sup>2</sup>) + C</p>
|
|
<p>Done!</p>
|
|
</div>
|
|
<p>Now let's try a slightly harder example:</p>
|
|
<div class="example">
|
|
<h3>Example: <span style="font-size:150%;">∫</span>x/(x<sup>2</sup>+1) dx</h3>
|
|
<p>Let me see ... the derivative of x<sup>2</sup>+1 is 2x ... so how about we rearrange it like this:</p>
|
|
<p class="center larger"><span style="font-size:150%;">∫</span>x/(x<sup>2</sup>+1) dx = ½<span style="font-size:150%;">∫</span>2x/(x<sup>2</sup>+1) dx</p>
|
|
<p>Then we have:</p>
|
|
<p class="center larger"><img src="images/integral-subs-4.svg" alt="integration by substitution 2x/(x^2+1)"></p>
|
|
<p>Then integrate:</p>
|
|
<p class="center larger">½<span style="font-size:150%;">∫</span>1/u du = ½ ln<b>|</b>u<b>|</b> + C</p>
|
|
<p>Now put <b>u=x<sup>2</sup>+1</b> back again:</p>
|
|
<p class="center larger">½ ln(x<sup>2</sup>+1) + C</p>
|
|
</div>
|
|
<p>And how about this one:</p>
|
|
<div class="example">
|
|
<h3>Example: <span style="font-size:150%;">∫</span>(x+1)<sup>3</sup> dx</h3>
|
|
<p>Let me see ... the derivative of x+1 is ... well it is simply 1.</p>
|
|
<p>So we can have this:</p>
|
|
<p class="center larger"><span style="font-size:150%;">∫</span>(x+1)<sup>3</sup> dx = <span style="font-size:150%;">∫</span>(x+1)<sup>3</sup> · 1 dx</p>
|
|
<p>Then we have:</p>
|
|
<p class="center"><img src="images/integral-subs-5.svg" alt="integration by substitution (x+1)^3"></p>
|
|
<p>Then integrate:</p>
|
|
<p class="center larger"><span style="font-size:150%;">∫</span>u<sup>3</sup> du = <span class="intbl"><em>u<sup>4</sup></em><strong>4</strong></span> + C</p>
|
|
<p>Now put <b>u=x+1</b> back again:</p>
|
|
<p class="center larger"><span class="intbl"><em>(x+1)<sup>4</sup></em><strong>4</strong></span> + C</p>
|
|
</div>
|
|
<p>We can take that idea further like this:</p>
|
|
<div class="example">
|
|
<h3>Example: <span style="font-size:150%;">∫</span>(5x+2)<sup>7</sup> dx</h3>
|
|
<p>If it was in THIS form we could do it:</p>
|
|
<p class="center larger"><span style="font-size:150%;">∫</span>(5x+2)<sup>7</sup> <b>5</b> dx</p>
|
|
<p>So let's make it so by doing this:</p>
|
|
<p class="center larger"><span class="intbl"><em>1</em><strong>5</strong></span> <span style="font-size:150%;">∫</span>(5x+2)<sup>7</sup> <b>5</b> dx</p>
|
|
<p>The <span class="intbl"><em>1</em><strong>5</strong></span> and 5 cancel out so all is fine.</p>
|
|
<p>And now we can have <b>u=5x+2</b></p>
|
|
<p class="center"><img src="images/integral-subs-6.svg" alt="integration by substitution (x+1)^3"></p>
|
|
|
|
<p>And then integrate:</p>
|
|
<p class="center larger"><span class="intbl"><em>1</em><strong>5</strong></span> <span style="font-size:150%;">∫</span>u<sup>7</sup> du = <span class="intbl"><em>1</em><strong>5</strong></span> <span class="intbl"><em>u<sup>8</sup></em><strong>8</strong></span> + C</p>
|
|
<p>Now put <b>u=5x+2</b> back again, and simplify:</p>
|
|
<p class="center larger"><span class="intbl"><em>(5x+2)<sup>8</sup></em><strong>40</strong></span> + C</p>
|
|
</div>
|
|
Now get some practice, OK?
|
|
<h2>In Summary</h2>
|
|
<div class="dotpoint"> When we can put an integral in this form:
|
|
|
|
|
|
<p class="center"><img src="images/integral-subs-1.svg" alt="integration by substitution general"></p>
|
|
</div>
|
|
<div class="dotpoint"> Then we can set <b>u=g(x)</b> and integrate <span class="center larger"><span style="font-size:150%;">∫</span>f(u) du</span></div>
|
|
<div class="dotpoint"> And finish up by re-inserting <b>g(x)</b> where <b>u</b> is.
|
|
</div>
|
|
<p> </p>
|
|
<div class="questions">
|
|
<script>getQ(6854, 6855, 6856, 6857, 6858, 6859, 6860, 6861, 6862, 6863);</script>
|
|
</div>
|
|
|
|
<div class="related">
|
|
<a href="integration-introduction.html">Introduction to Integration</a>
|
|
<a href="index.html">Calculus Index</a>
|
|
</div>
|
|
<!-- #EndEditable -->
|
|
|
|
</article>
|
|
|
|
<div id="adend" class="centerfull noprint"></div>
|
|
<footer id="footer" class="centerfull noprint"></footer>
|
|
<div id="copyrt">Copyright © 2020 MathsIsFun.com</div>
|
|
|
|
</div>
|
|
</body><!-- #EndTemplate -->
|
|
<!-- Mirrored from www.mathsisfun.com/calculus/integration-by-substitution.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:49:14 GMT -->
|
|
</html> |