lkarch.org/tools/mathisfun/www.mathsisfun.com/calculus/differential-equations-exact-factors.html
Lucas Kent e39465ad2f Changes to be committed:
new file:   Files/flashplayer_32_sa.exe
	new file:   favicon.ico
	new file:   globe.gif
	new file:   imgs/download.png
	new file:   imgs/zuck.jpg
	new file:   index.html
	new file:   other.ico
	new file:   script.js
	new file:   site.webmanifest
	new file:   sitemap.html
	new file:   styles/backround.css
	new file:   styles/border.css
	new file:   styles/fonts/Titillium_Web/OFL.txt
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf
	new file:   styles/fonts/webfontkit-20221027-163353/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2
	new file:   styles/fonts/webfontkit-20221027-165950/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2
	new file:   styles/style.css
	new file:   tools/2048/.gitignore
	new file:   tools/2048/.jshintrc
	new file:   tools/2048/CONTRIBUTING.md
	new file:   tools/2048/LICENSE.txt
	new file:   tools/2048/README.md
	new file:   tools/2048/Rakefile
	new file:   tools/2048/favicon.ico
	new file:   tools/2048/index.html
	new file:   tools/2048/js/animframe_polyfill.js
	new file:   tools/2048/js/application.js
	new file:   tools/2048/js/bind_polyfill.js
	new file:   tools/2048/js/classlist_polyfill.js
	new file:   tools/2048/js/game_manager.js
	new file:   tools/2048/js/grid.js
	new file:   tools/2048/js/html_actuator.js
	new file:   tools/2048/js/keyboard_input_manager.js
	new file:   tools/2048/js/local_storage_manager.js
	new file:   tools/2048/js/tile.js
    new file:   tools/2048/meta/apple-touch-icon.png
	new file:   tools/webretro/cores/neocd_libretro.js
	new file:   tools/webretro/cores/neocd_libretro.wasm
	new file:   tools/webretro/cores/nestopia_libretro.js
	new file:   tools/webretro/cores/nestopia_libretro.wasm
	new file:   tools/webretro/cores/o2em_libretro.js
	new file:   tools/webretro/cores/o2em_libretro.wasm
	new file:   tools/webretro/cores/opera_libretro.js
	new file:   tools/webretro/cores/opera_libretro.wasm
2022-11-02 08:40:01 -04:00

432 lines
25 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!doctype html>
<html lang="en">
<!-- #BeginTemplate "/Templates/Advanced.dwt" --><!-- DW6 -->
<!-- Mirrored from www.mathsisfun.com/calculus/differential-equations-exact-factors.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:49:29 GMT -->
<head>
<meta charset="UTF-8">
<!-- #BeginEditable "doctitle" -->
<title>Exact Equations and Integrating Factors</title>
<meta name="description" content="Math explained in easy language, plus puzzles, games, quizzes, videos and worksheets. For K-12 kids, teachers and parents.">
<script>Author='Jesus Montes and Rod Pierce';</script>
<style>
.integral { font: 160% Georgia, Arial; position: relative; top: 1px; padding: 0 1px 0 0.2rem;}
</style>
<!-- #EndEditable -->
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
<meta name="HandheldFriendly" content="true">
<meta name="referrer" content="always">
<link rel="preload" href="../images/style/font-champ-bold.ttf" as="font" type="font/ttf" crossorigin>
<link rel="preload" href="../style4.css" as="style">
<link rel="preload" href="../main4.js" as="script">
<link rel="stylesheet" href="../style4.css">
<script src="../main4.js" defer></script>
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async src="https://www.googletagmanager.com/gtag/js?id=UA-29771508-1"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'UA-29771508-1');
</script>
</head>
<body id="bodybg" class="adv">
<div id="stt"></div>
<div id="adTop"></div>
<header>
<div id="hdr"></div>
<div id="tran"></div>
<div id="adHide"></div>
<div id="cookOK"></div>
</header>
<div class="mid">
<nav>
<div id="menuWide" class="menu"></div>
<div id="logo"><a href="../index.html"><img src="../images/style/logo-adv.svg" alt="Math is Fun Advanced"></a></div>
<div id="search" role="search"></div>
<div id="linkto"></div>
<div id="menuSlim" class="menu"></div>
<div id="menuTiny" class="menu"></div>
</nav>
<div id="extra"></div>
<article id="content" role="main">
<!-- #BeginEditable "Body" -->
<h1>Exact Equations and Integrating Factors</h1>
<p>Hi! You might like to learn about <a href="differential-equations.html">differential equations</a> and <a href="derivatives-partial.html">partial derivatives</a> first!</p>
<h2>Exact Equation</h2>
<p>An "exact" equation is where a first-order differential equation like this:</p>
<p class="center larger">M(x, y)dx + N(x, y)dy = 0</p>
<p>has some special function <span class="larger">I(x, y)</span> whose <a href="derivatives-partial.html">partial derivatives</a> can be put in place of M and N like this:</p>
<p class="center larger"><span class="intbl"><em>∂I</em><strong>∂x</strong></span>dx + <span class="intbl"><em>∂I</em><strong>∂y</strong></span>dy = 0</p>
<p>and our job is to find that magical function <span class="larger">I(x, y)</span> if it exists.</p>
<div class="def">
<h3>We can know at the start if it is an exact equation or not!</h3>
<p>Imagine we do these further partial derivatives:</p>
<p class="center large"><span class="intbl"><em>∂M</em><strong>∂y</strong></span> = <span class="intbl"><em><sup>2</sup>I</em><strong>∂y ∂x</strong></span></p>
<p class="center large"><span class="intbl"><em>∂N</em><strong>∂x</strong></span> = <span class="intbl"><em><sup>2</sup>I</em><strong>∂y ∂x</strong></span></p>
<p>they end up <b>the same</b>! And so this will be true:</p>
<p class="center large"><span class="intbl"><em>∂M</em><strong>∂y</strong></span> = <span class="intbl"><em>∂N</em><strong>∂x</strong></span></p>
<p>When it is true we have an an "exact equation" and we can proceed.</p>
<p>And to discover <b>I(x, y)</b> we do <b>EITHER</b>:</p>
<ul>
<li>I(x, y) = <span class="integral"></span>M(x, y) dx (with <b>x</b> as an independent variable), <b>OR</b></li>
<li>I(x, y) = <span class="integral"></span>N(x, y) dy (with <b>y</b> as an independent variable)</li>
</ul>
<p>And then there is some extra work (we will show you) to arrive at the <b>general solution</b></p>
<p class="center large">I(x, y) = C</p>
</div>
<p>&nbsp;</p>
<p>Let's see it in action.</p>
<div class="example">
<h3><b>Example 1:</b> Solve</h3>
<p class="center large">(3x<sup>2</sup>y<sup>3</sup> 5x<sup>4</sup>) dx + (y + 3x<sup>3</sup>y<sup>2</sup>) dy = 0</p>
<p>In this case we have:</p>
<ul>
<li>M(x, y) = 3x<sup>2</sup>y<sup>3</sup>
5x<sup>4</sup></li>
<li>N(x, y) = y + 3x<sup>3</sup>y<sup>2</sup></li>
</ul>
<p>We evaluate the partial derivatives to check for exactness.</p>
<ul>
<li><span class="intbl"><em>∂M</em><strong>∂y</strong></span> = 9x<sup>2</sup>y<sup>2</sup></li>
<li><span class="intbl"><em>∂N</em><strong>∂x</strong></span> = 9x<sup>2</sup>y<sup>2</sup></li>
</ul><br>
<p class="so">They are the same! So our equation is exact.</p>
<p>We can proceed.</p>
<p>Now we want to discover I(x, y)</p>
<p>Let's do the integration with <b>x</b> as an independent variable:</p>
<p class="center large">I(x, y) = <span class="integral"></span>M(x, y) dx</p>
<p class="center large">= <span class="integral"></span>(3x<sup>2</sup>y<sup>3</sup> 5x<sup>4</sup>) dx</p>
<p class="center large">= x<sup>3</sup>y<sup>3</sup> x<sup>5</sup> +<em> f(y)</em></p>
<p class="def">Note: <em> f(y)</em> is our version of the constant of integration "C" because (due to the partial derivative) we had <strong>y</strong> as a fixed parameter that we know is really a variable.</p>
<p>So now we need to discover f(y)</p>
<p>At the very start of this page we said that N(x, y) can be replaced by <span class="intbl"><em>∂I</em><strong>∂y</strong></span>, so:</p>
<p class="center large"><span class="intbl"><em>∂I</em><strong>∂y</strong></span> = N(x, y)</p>
<p>Which gets us:</p>
<p class="center large">3x<sup>3</sup>y<sup>2</sup> + <span class="intbl"><em>df</em><strong>dy</strong></span> = y + 3x<sup>3</sup>y<sup>2</sup></p>
<p>Cancelling terms:</p>
<p class="center large"><span class="intbl"><em>df</em><strong>dy</strong></span> = y</p>
<p>Integrating both sides:</p>
<p class="center large">f(y) = <span class="intbl"><em>y<sup>2</sup></em><strong>2</strong></span> + C</p>
<p><b>We have f(y).</b> Now just put it in place:</p>
<p class="center large">I(x, y) = x<sup>3</sup>y<sup>3</sup> x<sup>5</sup> + <span class="intbl"><em>y<sup>2</sup></em><strong>2</strong></span> + C</p>
<p>and the <b>general solution</b> (as mentioned before this example) is:</p>
<p class="center large">I(x, y) = C</p>
<p class="beach dotpoint"><b>Ooops! That "C" can be a different value to the "C" just before.</b> But they both mean "any constant", so let's call them C<sub>1</sub> and C<sub>2</sub> and then roll them into a new C below by saying C=C<sub>1</sub>+C<sub>2</sub></p>
<p>So we get:</p>
<p class="center larger">x<sup>3</sup>y<sup>3</sup> x<sup>5</sup> + <span class="intbl"><em>y<sup>2</sup></em><strong>2</strong></span> = C</p>
<p>And that's how this method works!</p> </div>
<p>Since that was our first example, let's go further and make sure our solution is correct.</p>
<p>Let's derive I(x, y) with respect
to x, that is:</p>
<div class="center80">
<p class="center">Evaluate <span class="intbl"><em>∂I</em><strong>∂x</strong></span></p>
</div>
<p>Start with:</p>
<p class="center large">I(x, y) = x<sup>3</sup>y<sup>3</sup> x<sup>5</sup> + <span class="intbl"><em>y<sup>2</sup></em><strong>2</strong></span></p>
<p>Using <a href="implicit-differentiation.html">implicit
differentiation</a> we get</p>
<p class="center large"><span class="intbl"><em>∂I</em><strong>∂x</strong></span> = x<sup>3</sup>3y<sup>2</sup>y'
+ 3x<sup>2</sup>y<sup>3</sup> 5x<sup>4</sup> + yy'</p>
<p>Simplify</p>
<p class="center large"><span class="intbl"><em>∂I</em><strong>∂x</strong></span> =&nbsp; 3x<sup>2</sup>y<sup>3</sup> 5x<sup>4</sup> + y'(y +&nbsp; 3x<sup>3</sup>y<sup>2</sup>)</p>
<p>We use the facts that <span class="larger">y' = <span class="intbl"><em>dy</em><strong>dx</strong></span></span> and <span class="larger"><span class="intbl"><em>∂I</em><strong>∂x</strong></span> = 0</span>, then multiply everything by <span class="larger">dx</span> to finally get:</p>
<p class="center large">(y +&nbsp; 3x<sup>3</sup>y<sup>2</sup>)dy
+ (3x<sup>2</sup>y<sup>3</sup> 5x<sup>4</sup>)dx =
0</p>
<p>which is our original differential equation.</p>
<p>And so we know our solution is correct.</p>
<p><br></p>
<div class="example">
<h3><b>Example 2:</b> Solve</h3>
<p class="center large">(3x<sup>2</sup> 2xy + 2)dx + (6y<sup>2</sup> x<sup>2</sup> + 3)dy = 0</p>
<ul>
<li>M = 3x<sup>2</sup> 2xy + 2</li>
<li>N = 6y<sup>2</sup> x<sup>2</sup> + 3</li>
</ul>
<p>So:</p>
<ul>
<li><span class="intbl"><em>∂M</em><strong>∂y</strong></span> = 2x</li>
<li><span class="intbl"><em>∂N</em><strong>∂x</strong></span> = 2x</li>
</ul><br>
<p class="so">The equation is exact!</p>
<p>Now we are going to find the function I(x, y)</p>
<p>This time let's try I(x, y) = <span class="integral"></span>N(x, y)dy</p>
<p>So I(x, y) = <span class="integral"></span>(6y<sup>2</sup> x<sup>2</sup> + 3)dy</p>
<p class="center large">I(x, y) = 2y<sup>3</sup> x<sup>2</sup>y
+ 3y + g(x)&nbsp;&nbsp;&nbsp; <span class="center hilite">(equation 1)</span></p>
<p>Now we differentiate I(x, y) with respect to x and set that equal to M:</p>
<p class="center large"><span class="intbl"><em>∂I</em><strong>∂x</strong></span> = M(x, y)</p>
<p class="center large">0 2xy + 0 + g'(x) = 3x<sup>2</sup> 2xy + 2</p>
<p class="center large">2xy + g'(x) = 3x<sup>2</sup> 2xy + 2</p>
<p class="center large">g'(x) = 3x<sup>2</sup> + 2</p>
<p>And integration yields:</p>
<p class="center large">g(x) = x<sup>3</sup> +
2x + C &nbsp;&nbsp;&nbsp; <span class="center hilite">(equation 2)</span></p>
<p>Now we can replace the g(x) in equation 2 in equation 1:</p>
<p class="center large">I(x, y) = 2y<sup>3</sup> x<sup>2</sup>y + 3y + x<sup>3</sup> + 2x + C</p>
<p>And the general solution is of the form</p>
<p class="center large">I(x, y) = C</p>
<p>and so (remembering that the previous two "C"s are different constants that can be rolled into one by using C=C<sub>1</sub>+C<sub>2</sub>) we get:</p>
<p class="center larger">2y<sup>3</sup> x<sup>2</sup>y + 3y + x<sup>3</sup> + 2x = C</p>
<p><strong>Solved!</strong></p>
</div><br>
<div class="example">
<h3><b>Example 3:</b> Solve</h3>
<p class="center large">(xcos(y) y)dx + (xsin(y) + x)dy = 0</p>
<p>We have:</p>
<p>M = (xcos(y) y)dx</p>
<p class="so"><span class="intbl"><em>∂M</em><strong>∂y</strong></span> = xsin(y) 1</p>
<p>N = (xsin(y) + x)dy</p>
<p class="so"><span class="intbl"><em>∂N</em><strong>∂x</strong></span> = sin(y) +1</p><br>
Thus
<p class="center large"><span class="intbl"><em>∂M</em><strong>∂y</strong></span><span class="intbl"><em>∂N</em><strong>∂x</strong></span></p><br>
<div class="center80"><strong>So this equation
is not exact!</strong><br>
</div><br>
</div><br>
<div class="example">
<h3><b>Example 4:</b> Solve</h3>
<p class="center large">[y<sup>2</sup> x<sup>2</sup>sin(xy)]dy +
[cos(xy) xy sin(xy) + e<sup>2x</sup>]dx = 0</p>
<p>M = cos(xy) xy sin(xy) + e<sup>2x</sup></p>
<p class="so"><span class="intbl"><em>∂M</em><strong>∂y</strong></span> = x<sup>2</sup>y cos(xy) 2x sin(xy)</p>
<p>N = y<sup>2</sup> x<sup>2</sup>sin(xy)</p>
<p class="so"><span class="intbl"><em>∂N</em><strong>∂x</strong></span> = x<sup>2</sup>y cos(xy) 2x sin(xy)</p>
<p class="so">They are the same! So our equation is exact.</p>
<p>This time we will evaluate I(x, y) = <span class="integral"></span>M(x, y)dx</p>
<p class="center large">I(x, y) = <span class="integral"></span>(cos(xy) xy sin(xy) + e<sup>2x</sup>)dx</p>
<p>&nbsp;Using Integration by Parts we get:</p>
<p class="center large">I(x, y) = <span class="intbl"><em>1</em><strong>y</strong></span>sin(xy) +
x cos(xy) <span class="intbl"><em>1</em><strong>y</strong></span>sin(xy)
+ <span class="intbl"><em>1</em><strong>2</strong></span>e<sup>2x</sup> + f(y)</p>
<p class="center large">I(x, y) = x cos(xy) + <span class="intbl"><em>1</em><strong>2</strong></span>e<sup>2x</sup> + f(y)</p>
<p>Now we evaluate the derivative with respect to y</p>
<p class="center large"><span class="intbl"><em>∂I</em><strong>∂y</strong></span> =
x<sup>2</sup>sin(xy) + f'(y)</p>
<p>And that is equal to N, that equal to M:&nbsp;</p>
<p class="center large"><span class="intbl"><em>∂I</em><strong>∂y</strong></span> = N(x, y)</p>
<p class="center large">x<sup>2</sup>sin(xy)&nbsp;+
f'(y) = y<sup>2</sup> x<sup>2</sup>sin(xy)</p>
<p class="center large">f'(y) = y<sup>2</sup> x<sup>2</sup>sin(xy) + x<sup>2</sup>sin(xy)</p>
<p class="center large">f'(y) = y<sup>2</sup>&nbsp;</p>
<p class="center large">f(y) = <span class="intbl"><em>1</em><strong>3</strong></span>y<sup>3</sup></p>
<p>So our general solution of I(x, y) = C becomes:</p>
<p class="center larger">xcos(xy) + <span class="intbl"><em>1</em><strong>2</strong></span>e<sup>2x</sup> + <span class="intbl"><em>1</em><strong>3</strong></span>y<sup>3</sup> = C</p>
<p>Done!</p>
</div>
<h2>Integrating Factors</h2>
<p>Some equations that are not exact may be multiplied by some factor, a
function <b>u(x, y)</b>, to make them exact.</p>
<p>When this function u(x, y) exists it is called an <b>integrating factor</b>.
It will make valid the following expression:</p>
<p class="center"><strong><span class="intbl"><em>∂(u·N(x, y))</em>∂x</span> = <span class="intbl"><em>∂(u·M(x, y))</em>∂y</span></strong></p>
<div class="def"> There are some special cases:<br>
<br>
<ul>
<li><strong>u(x, y) = x<sup>m</sup>y<sup>n</sup> </strong></li>
<li><strong> u(x, y) = u(x) </strong> (that is, u is a function only of x)</li>
<li><strong>u(x, y) = u(y) </strong> (that
is, u is a function only of y)</li>
</ul>
</div>
<p>Let's look at those cases ...</p>
<p>&nbsp;</p>
<h3>Integrating Factors using u(x, y) = x<sup>m</sup>y<sup>n</sup></h3>
<div class="example">
<h3><b>Example 5:</b> <span class="center large">(y<sup>2</sup> + 3xy<sup>3</sup>)dx + (1
xy)dy = 0 </span></h3>
<p><br>
M = y<sup>2</sup> + 3xy<sup>3</sup></p>
<p class="so"><span class="intbl"><em>∂M</em><strong>∂y</strong></span> = 2y + 9xy<sup>2</sup></p>
<p>N = 1 xy</p>
<p class="so"><span class="intbl"><em>∂N</em><strong>∂x</strong></span> = y</p>
<p>So it's clear that <span class="intbl"><em>∂M</em><strong>∂y</strong></span><span class="intbl"><em>∂N</em><strong>∂x</strong></span></p>
<p>But we can try to <em>make it exact</em> by multiplying each part of the
equation by<b> x<sup>m</sup>y<sup>n</sup></b>:</p>
<div class="center large">(x<sup>m</sup>y<sup>n</sup>y<sup>2</sup> + x<sup>m</sup>y<sup>n</sup>3xy<sup>3</sup>) dx + (x<sup>m</sup>y<sup>n</sup> x<sup>m</sup>y<sup>n</sup>xy) dy = 0</div>
<!---&minus; (x^m~y^n~y^2 + x^m~y^n~3xy^3~) dx + (x^m~y^n &minus; x^m~y^n~xy) dy = 0---->
<p>Which "simplifies" to:</p>
<p class="center large">(x<sup>m</sup>y<sup>n+2</sup> + 3x<sup>m+1</sup>y<sup>n+3</sup>)dx
+ (x<sup>m</sup>y<sup>n</sup> x<sup>m+1</sup>y<sup>n+1</sup>)dy =
0</p>
<p>And now we have:</p>
<p>M = x<sup>m</sup>y<sup>n+2</sup> + 3x<sup>m+1</sup>y<sup>n+3</sup></p>
<p class="so"><span class="intbl"><em>∂M</em><strong>∂y</strong></span> = (n + 2)x<sup>m</sup>y<sup>n+1</sup> + 3(n + 3)x<sup>m+1</sup>y<sup>n+2</sup></p>
<p>N = x<sup>m</sup>y<sup>n</sup> x<sup>m+1</sup>y<sup>n+1</sup></p>
<p class="so"><span class="intbl"><em>∂N</em><strong>∂x</strong></span> = mx<sup>m1</sup>y<sup>n</sup> (m + 1)x<sup>m</sup>y<sup>n+1</sup>&nbsp;</p>
<p>And we <b>want</b> <span class="intbl"><em>∂M</em><strong>∂y</strong></span> = <span class="intbl"><em>∂N</em><strong>∂x</strong></span></p>
<p class="large center">So let's choose the right values of <strong>m</strong><em> </em>and <strong>n</strong> to make the equation exact.</p>
<p>Set them equal:</p>
<p class="center large">(n + 2)x<sup>m</sup>y<sup>n+1</sup> + 3(n + 3)x<sup>m+1</sup>y<sup>n+2</sup> = mx<sup>m1</sup>y<sup>n</sup> (m + 1)x<sup>m</sup>y<sup>n+1</sup>&nbsp;</p>
<p>Re-order and simplify:</p>
<p class="center large">[(m + 1) + (n + 2)]x<sup>m</sup>y<sup>n+1</sup> + 3(n + 3)x<sup>m+1</sup>y<sup>n+2</sup> mx<sup>m1</sup>y<sup>n</sup> = 0&nbsp;</p>
<p><br>
For it to be equal to zero, <b>every</b> coefficient must be equal to zero, so:</p>
<ol>
<li>(m + 1) + (n + 2) = 0</li>
<li>3(n + 3) = 0</li>
<li>m = 0</li>
</ol>
<p>That last one, <strong>m = 0</strong>, is a big help! With m=0 we can figure that <strong>n = 3</strong></p>
<p>And the result is:</p>
<p class="center large">x<sup>m</sup>y<sup>n</sup> =
y<sup>3</sup></p>
<p>We now know to multiply our original differential equation by <b>y<sup>3</sup></b>:</p>
<div class="center large">(y<sup>3</sup>y<sup>2</sup> + y<sup>3</sup>3xy<sup>3</sup>) dx + (y<sup>3</sup> y<sup>3</sup>xy) dy</div>
<!---&minus; (y^&minus;3~y^2 + y^&minus;3~3xy^3~) dx + (y^&minus;3 - y^&minus;3~xy) dy ---->
<p>Which becomes:</p>
<p class="center large">(y<sup>1</sup> + 3x)dx + (y<sup>3</sup> xy<sup>2</sup>)dy = 0</p><br>
<p>And this new equation <i>should</i> be exact, but let's check again:<br>
<br>
M = y<sup>1</sup> + 3x</p>
<p class="so"><span class="intbl"><em>∂M</em><strong>∂y</strong></span> = y<sup>2</sup></p>
<p>N = y<sup>3</sup> xy<sup>2</sup></p>
<p class="so"><span class="intbl"><em>∂N</em><strong>∂x</strong></span> = y<sup>2</sup></p>
<p class="so"><span class="intbl"><em>∂M</em><strong>∂y</strong></span> = <span class="intbl"><em>∂N</em><strong>∂x</strong></span></p>
<p><br>
They are the same! <strong>Our equation is now exact</strong>!<br>
<br>
So let's continue:</p>
<p class="center large">I(x, y) = <span class="integral"></span>N(x, y)dy</p>
<p class="center large">I(x, y) = <span class="integral"></span>(y<sup>3</sup> xy<sup>2</sup>)dy</p>
<p class="center large">I(x, y) = <span class="intbl"><em>1</em><strong>2</strong></span>y<sup>2</sup> + xy<sup>1</sup> + g(x)</p>
<p>Now, to determine the function g(x) we evaluate</p>
<p class="center large"><span class="intbl"><em>∂I</em><strong>∂x</strong></span> = y<sup>1</sup> + g'(x)</p>
<p>And that equals M = y<sup>1</sup> + 3x, so:</p>
<p class="center large">y<sup>1</sup> + g'(x) = y<sup>1</sup> + 3x</p>
<p>And so:</p>
<p class="center large">g'(x) = 3x</p>
<p class="center large">g(x) = <span class="intbl"><em>3</em><strong>2</strong></span>x<sup>2</sup></p>
<p>So our general solution of I(x, y) = C is:</p>
<p class="center larger"><span class="intbl"><em>1</em><strong>2</strong></span>y<sup>2</sup> + xy<sup>1</sup> + <span class="intbl"><em>3</em><strong>2</strong></span>x<sup>2</sup> = C</p>
</div>
<p>&nbsp;</p>
<h3>Integrating Factors using u(x, y) = u(x)</h3>
<p>For <b>u(x, y) = u(x)</b> we must check for this important condition:</p>
<div class="def">
<p>The expression:</p>
<div class="center large">Z(x) = <span class="intbl"><em>1</em><strong>N</strong></span> [<span class="intbl"><em>∂M</em><strong>∂y</strong></span> <span class="intbl"><em>∂N</em><strong>∂x</strong></span>]</div>
<!-- Z(x) = 1/N [DAYM/DAYy - DAYN/DAYx ] -->
<p>must <b>not</b> have the <b>y</b> term, so that the integrating factor is only a function of <b>x</b></p>
</div>
<p><br>
If the above condition is true then our integrating factor is:</p>
<p class="center large">u(x) = e<sup><span class="integral"></span>Z(x)dx</sup></p>
<p>Let's try an example:</p>
<div class="example">
<h3><b>Example 6:</b> (3xy y<sup>2</sup>)dx + x(x y)dy = 0</h3>
<div></div>
<p>M = 3xy y<sup>2</sup></p>
<p class="so"><span class="intbl"><em>∂M</em><strong>∂y</strong></span> = 3x 2y</p>
<p>N = x(x y)</p>
<p class="so"><span class="intbl"><em>∂N</em><strong>∂x</strong></span> = 2x y</p>
<p class="so"><span class="intbl"><em>∂M</em><strong>∂y</strong></span><span class="intbl"><em>∂N</em><strong>∂x</strong></span></p>
So, our equation is <b>not</b> exact.<br>
<br>
Let us work out Z(x):
<div class="center large">Z(x) = <span class="intbl"><em>1</em><strong>N</strong></span> [<span class="intbl"><em>∂M</em><strong>∂y</strong></span> <span class="intbl"><em>∂N</em><strong>∂x</strong></span> ]</div>
<!-- Z(x) = 1/N [DAYM/DAYy - DAYN/DAYx ] -->
<div class="center large">= <span class="intbl"><em>1</em><strong>N</strong></span> [ 3x2y (2xy) ]</div>
<!-- = 1/N [ 3x2y &minus; (2xy) ] -->
<div class="center large">= <span class="intbl"><em>xy</em><strong>x(xy)</strong></span></div>
<!-- = x-y/x(x-y) -->
<div class="center large">= <span class="intbl"><em>1</em><strong>x</strong></span></div>
<!-- = 1/x -->
<p>So Z(x) is a function only of x, yay!</p>
<p><br>
So our <strong>integrating factor</strong> is<br>
<br>
u(x) = e<sup><span class="integral"></span>Z(x)dx</sup></p>
<p>= e<sup><span class="integral"></span>(1/x)dx</sup></p>
<p>= e<sup>ln(x)</sup></p>
<p>= <strong>x</strong></p>
<p>Now that we found the integrating factor, let's multiply the
differential equation by it.</p>
<p class="center large">x[(3xy y<sup>2</sup>)dx +
x(x y)dy = 0]</p>
<p>and we get</p>
<p class="center large">(3x<sup>2</sup>y xy<sup>2</sup>)dx
+ (x<sup>3</sup> x<sup>2</sup>y)dy = 0</p>
<p>It should now be exact. Let's test it:</p>
<p>M = 3x<sup>2</sup>y xy<sup>2</sup></p>
<p class="so"><span class="intbl"><em>∂M</em><strong>∂y</strong></span> = 3x<sup>2</sup> 2xy</p>
<p>N = x<sup>3</sup> x<sup>2</sup>y</p>
<p class="so"><span class="intbl"><em>∂N</em><strong>∂x</strong></span> = 3x<sup>2</sup> 2xy</p>
<p class="so"><span class="intbl"><em>∂M</em><strong>∂y</strong></span> = <span class="intbl"><em>∂N</em><strong>∂x</strong></span></p>
<p>So our equation is exact!</p>
<p>Now we solve in the same way as the previous examples.</p>
<p class="center large">I(x, y) = <span class="integral"></span>M(x, y)dx</p>
<p class="center large">= <span class="integral"></span>(3x<sup>2</sup>y xy<sup>2</sup>)dx</p>
<p class="center large">= x<sup>3</sup>y <span class="intbl"><em>1</em><strong>2</strong></span>x<sup>2</sup>y<sup>2</sup> + c<sub>1</sub></p>And we get the general solution I(x, y) = c :
<p class="center larger">x<sup>3</sup>y <span class="intbl"><em>1</em><strong>2</strong></span>x<sup>2</sup>y<sup>2</sup> + c<sub>1</sub> = c</p>
<p>Combine the constants:</p>
<p class="center larger">x<sup>3</sup>y <span class="intbl"><em>1</em><strong>2</strong></span>x<sup>2</sup>y<sup>2</sup> = c</p>
<p>Solved!</p>
</div>
<p>&nbsp;</p>
<h3>Integrating Factors using u(x, y) = u(y)</h3>
<p><b>u(x, y) = u(y)</b> is very
similar to the previous case <strong>u(x, y)</strong> <strong>=
u(x)</strong></p>
<p>So, in a similar way, we have:</p>
<div class="def">
<p>The expression</p>
<p class="center large"><span class="intbl"><em>1</em><strong>M</strong></span>[<span class="intbl"><em>∂N</em><strong>∂x</strong></span><span class="intbl"><em>∂M</em><strong>∂y</strong></span>]</p>
<p>must <b>not</b> have the <strong>x</strong> term in order for the
integrating factor to be a function of only <strong>y</strong>.</p>
</div>
<p>And if that condition is true, we call that expression <strong>Z(y)</strong> and our integrating factor is</p>
<p class="center large">u(y) = e<sup><span class="integral"></span>Z(y)dy</sup></p>
<p>And we can continue just like the previous example</p>
<p>&nbsp;</p>
<p>And there you have it!</p>
<div class="related">
<a href="index.html">Calculus Index</a>
</div>
<!-- #EndEditable -->
</article>
<div id="adend" class="centerfull noprint"></div>
<footer id="footer" class="centerfull noprint"></footer>
<div id="copyrt">Copyright &copy; 2021 MathsIsFun.com</div>
</div>
</body>
<!-- #EndTemplate -->
<!-- Mirrored from www.mathsisfun.com/calculus/differential-equations-exact-factors.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:49:29 GMT -->
</html>