lkarch.org/tools/mathisfun/www.mathsisfun.com/calculus/derivatives-introduction.html
Lucas Kent e39465ad2f Changes to be committed:
new file:   Files/flashplayer_32_sa.exe
	new file:   favicon.ico
	new file:   globe.gif
	new file:   imgs/download.png
	new file:   imgs/zuck.jpg
	new file:   index.html
	new file:   other.ico
	new file:   script.js
	new file:   site.webmanifest
	new file:   sitemap.html
	new file:   styles/backround.css
	new file:   styles/border.css
	new file:   styles/fonts/Titillium_Web/OFL.txt
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf
	new file:   styles/fonts/webfontkit-20221027-163353/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2
	new file:   styles/fonts/webfontkit-20221027-165950/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2
	new file:   styles/style.css
	new file:   tools/2048/.gitignore
	new file:   tools/2048/.jshintrc
	new file:   tools/2048/CONTRIBUTING.md
	new file:   tools/2048/LICENSE.txt
	new file:   tools/2048/README.md
	new file:   tools/2048/Rakefile
	new file:   tools/2048/favicon.ico
	new file:   tools/2048/index.html
	new file:   tools/2048/js/animframe_polyfill.js
	new file:   tools/2048/js/application.js
	new file:   tools/2048/js/bind_polyfill.js
	new file:   tools/2048/js/classlist_polyfill.js
	new file:   tools/2048/js/game_manager.js
	new file:   tools/2048/js/grid.js
	new file:   tools/2048/js/html_actuator.js
	new file:   tools/2048/js/keyboard_input_manager.js
	new file:   tools/2048/js/local_storage_manager.js
	new file:   tools/2048/js/tile.js
    new file:   tools/2048/meta/apple-touch-icon.png
	new file:   tools/webretro/cores/neocd_libretro.js
	new file:   tools/webretro/cores/neocd_libretro.wasm
	new file:   tools/webretro/cores/nestopia_libretro.js
	new file:   tools/webretro/cores/nestopia_libretro.wasm
	new file:   tools/webretro/cores/o2em_libretro.js
	new file:   tools/webretro/cores/o2em_libretro.wasm
	new file:   tools/webretro/cores/opera_libretro.js
	new file:   tools/webretro/cores/opera_libretro.wasm
2022-11-02 08:40:01 -04:00

310 lines
13 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html lang="en"><!-- #BeginTemplate "/Templates/Advanced.dwt" --><!-- DW6 -->
<!-- Mirrored from www.mathsisfun.com/calculus/derivatives-introduction.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:38:55 GMT -->
<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
<!-- #BeginEditable "doctitle" -->
<title>Introduction to Derivatives</title>
<meta name="description" content="Math explained in easy language, plus puzzles, games, quizzes, worksheets and a forum. For K-12 kids, teachers and parents.">
<style>
.lim {
display: inline-table;
text-align: center;
vertical-align: middle;
margin: 0 4px 0 2px;
border-collapse: collapse;
}
.lim em {
display: table-row;
text-align: center;
font-style: inherit;
}
.lim strong {
display: table-row;
text-align: center;
font-weight: inherit;
font-size: 80%;
line-height: 9px;
}
</style>
<!-- #EndEditable -->
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
<meta name="HandheldFriendly" content="true">
<meta name="referrer" content="always">
<link rel="stylesheet" href="../style4.css">
<script src="../main4.js"></script>
<script>document.write(gTagHTML())</script>
</head>
<body id="bodybg" class="adv">
<div id="stt"></div>
<div id="adTop"></div>
<header>
<div id="hdr"></div>
<div id="tran"></div>
<div id="adHide"></div>
<div id="cookOK"></div>
</header>
<div class="mid">
<nav>
<div id="menuWide" class="menu"></div>
<div id="logo"><a href="../index.html"><img src="../images/style/logo-adv.svg" alt="Math is Fun"></a></div>
<div id="search" role="search"></div>
<div id="linkto"></div>
<div id="menuSlim" class="menu"></div>
<div id="menuTiny" class="menu"></div>
</nav>
<div id="extra"></div>
<article id="content" role="main">
<!-- #BeginEditable "Body" -->
<h1 class="center">Introduction to Derivatives</h1>
<p class="center">It is all about slope!</p>
<table style="border: 0; margin:auto;">
<tbody>
<tr>
<td class="large">
<p class="center large">Slope = <span class="intbl"><em>Change in Y</em><strong>Change in X</strong></span></p></td>
<td style="width:30px;">&nbsp;</td>
<td><img src="../algebra/images/slope.svg" alt="gradient"></td>
</tr>
</tbody></table>
<p>&nbsp;</p>
<table style="border: 0; margin:auto;">
<tbody>
<tr>
<td>
<p>We can find an <b>average</b> slope between two points.</p>
<p>&nbsp;</p></td>
<td>&nbsp;</td>
<td><img src="images/slope-average.svg" alt="average slope = 24/15"></td>
</tr>
<tr>
<td>
<p>But how do we find the slope <b>at a point</b>?</p>
<p>There is nothing to measure!</p></td>
<td>&nbsp;</td>
<td><img src="images/slope-0-0.svg" alt="slope 0/0 = ????"></td>
</tr>
<tr>
<td>
<p>But with derivatives we use a small difference ...</p>
<p class="center">... then have it <b>shrink towards zero</b>.</p></td>
<td>&nbsp;</td>
<td><img src="images/slope-dy-dx.svg" alt="slope delta y / delta x"></td>
</tr>
</tbody></table>
<h2>Let us Find a Derivative!</h2>
<p>To find the derivative of a function <span class="large">y = f(x)</span> we use the slope formula:</p>
<p class="center large">Slope = <span class="intbl">
<em>Change in Y</em>
<strong>Change in X</strong>
</span> = <span class="intbl"><em>Δy</em><strong>Δx</strong></span></p>
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/slope-dy-dx2.svg" alt="slope delta x and delta y"></p>
<p>And (from the diagram) we see that:</p>
<table align="center" cellpadding="3" border="0">
<tbody>
<tr>
<td><span class="center">x changes from</span></td>
<td>&nbsp;</td>
<td style="text-align:center;"><span class="center"><span class="large">x</span></span></td>
<td style="text-align:center;">to</td>
<td style="text-align:center;"><span class="center"><span class="large">x+Δx</span></span></td>
</tr>
<tr>
<td><span class="center">y changes from</span></td>
<td>&nbsp;</td>
<td style="text-align:center;"><span class="center"><span class="large">f(x)</span></span></td>
<td style="text-align:center;">to</td>
<td style="text-align:center;"><span class="center"><span class="large">f(x+Δx)</span></span></td>
</tr>
</tbody></table>
<p>Now follow these steps:</p>
<ul>
<li>Fill in this slope formula: <span class="intbl large">
<em>Δy</em><strong>Δx</strong></span> = <span class="intbl large"><em>f(x+Δx) f(x)</em><strong>Δx</strong></span></li>
<li>Simplify it as best we can</li>
<li>Then make <span class="large"><b>Δx</b></span> shrink towards zero.</li>
</ul>
<div style="clear:both"></div>
<p>Like this:</p>
<div class="example">
<h3>Example: the function <b>f(x) = x<sup>2</sup></b></h3>
<p>We know <b>f(x) = x<sup>2</sup></b>, and we can calculate <b>f(x<span class="large">+Δx</span>)</b> :</p>
<table style="border: 0;">
<tbody>
<tr>
<td style="text-align:right;">Start with:</td>
<td>&nbsp;</td>
<td><b>f(x<span class="large">+Δx</span>) = (x<span class="large">+Δx</span>)<sup>2</sup></b></td>
</tr>
<tr>
<td style="text-align:right;"><a href="../algebra/expanding.html">Expand</a> (x + Δx)<sup>2</sup>: </td>
<td>&nbsp;</td>
<td><b>f(x<span class="large">+Δx</span>) = x<sup>2</sup> + 2x Δx + (Δx)<sup>2</sup></b></td>
</tr>
</tbody></table>
<p>&nbsp;</p>
<div class="tbl">
<div class="row"><span class="left">The slope formula is:</span><span class="right"><span class="intbl">
<em>f(x+Δx) f(x)</em>
<strong>Δx</strong>
</span></span></div>
<div class="row"><span class="left">Put in <b>f(x+Δx)</b> and <b>f(x)</b>:</span><span class="right"><span class="intbl">
<em>x<sup>2</sup> + 2x Δx + (Δx)<sup>2</sup> x<sup>2</sup></em>
<strong>Δx</strong>
</span></span></div>
<div class="row"><span class="left">Simplify (x<sup>2</sup> and x<sup>2</sup> cancel):</span><span class="right"><span class="intbl">
<em>2x Δx + (Δx)<sup>2</sup></em>
<strong>Δx</strong>
</span></span></div>
<div class="row"><span class="left">Simplify more (divide through by <span class="large">Δx)</span>:</span><span class="right">= 2x + Δx</span></div>
<div class="row"><span class="left">Then, <b>as <span class="large">Δx</span> heads towards 0</b> we get:</span><span class="right">= 2x</span></div>
</div>
<p>&nbsp;</p>
<p class="larger">Result: the derivative of <b> x<sup>2</sup></b> is <b>2x</b></p>
<p>In other words, the slope at x is <b>2x</b></p>
</div>
<p>&nbsp;</p>
<div class="def">
<p>We write <b>dx</b> instead of <b>"Δx heads towards 0"</b>.</p>
<p>And "the derivative of" is commonly written <span class="intbl large"><em>d</em><strong>dx</strong></span> like this:</p>
<p class="center"><span class="larger"><span class="intbl"><em>d</em><strong>dx</strong></span>x<sup>2</sup> = 2x</span><br>
<i>"The derivative of <b>x<sup>2</sup></b> equals <b>2x</b>"</i><br>
or simply<i> "d dx of <b>x<sup>2</sup></b> equals <b>2x</b>"</i></p>
</div>
<br>
<h3>So what does <b><span class="intbl"><em>d</em><strong>dx</strong></span>x<sup>2</sup> = 2x</b> mean?</h3>
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/slope-x2-2.svg" alt="slope x^2 at 2 is 4"></p>
<p>It means that, for the function x<sup>2</sup>, the slope or "rate of change" at any point is <span class="center"> <b>2x</b>.</span></p>
<p>So when <b>x=2</b> the slope is <b>2x = 4</b>, as shown here:</p>
<p>Or when <b>x=5</b> the slope is <b>2x = 10</b>, and so on.</p>
<div class="def">
<p>Note: <span class="large">f(x)</span> can also be used for "the derivative of":</p>
<p class="center"><span class="larger">f(x) = 2x</span><br>
<i>"The derivative of f(x) equals 2x"</i><br>
or simply <i>"f-dash of x equals 2x"</i></p>
</div>
<p>&nbsp;</p>
<p>Let's try another example.</p>
<div class="example">
<h3>Example: What is <span class="intbl"><em>d</em><strong>dx</strong></span>x<sup>3</sup> ?</h3>
<p>We know <b>f(x) = x<sup>3</sup></b>, and can calculate <b>f(x+Δx)</b> :</p>
<table style="border: 0;">
<tbody>
<tr>
<td style="text-align:right;">Start with:</td>
<td>&nbsp;</td>
<td><b>f(x+Δx) = (x+Δx)<sup>3</sup></b></td>
</tr>
<tr>
<td style="text-align:right;"><a href="../algebra/expanding.html">Expand</a> (x + Δx)<sup>3</sup>: </td>
<td>&nbsp;</td>
<td nowrap="nowrap"><b>f(x+Δx) = x<sup>3</sup> + 3x<sup>2</sup> Δx + 3x (Δx)<sup>2</sup> + (Δx)<sup>3</sup></b></td>
</tr>
</tbody></table>
<p>&nbsp;</p>
<div class="tbl">
<div class="row"><span class="left">The slope formula:</span><span class="right"><span class="intbl">
<em>f(x+Δx) f(x)</em>
<strong>Δx</strong>
</span></span></div>
<div class="row"><span class="left">Put in <b>f(x+Δx)</b> and <b>f(x)</b>:</span><span class="right"><span class="intbl">
<em>x<sup>3</sup> + 3x<sup>2</sup> Δx + 3x (Δx)<sup>2</sup> + (Δx)<sup>3</sup> x<sup>3</sup></em>
<strong>Δx</strong>
</span></span></div>
<div class="row"><span class="left">Simplify (x<sup>3</sup> and x<sup>3</sup> cancel):</span><span class="right"><span class="intbl">
<em>3x<sup>2</sup> Δx + 3x (Δx)<sup>2</sup> + (Δx)<sup>3</sup></em>
<strong>Δx</strong>
</span></span></div>
<div class="row"><span class="left">Simplify more (divide through by <span class="large">Δx)</span>:</span><span class="right"> 3x<sup>2</sup> + 3x Δx + (Δx)<sup>2</sup></span></div>
<div class="row"><span class="left">Then, <b>as <span class="large">Δx</span> heads towards 0</b> we get:</span><span class="right">3x<sup>2</sup></span></div>
</div>
<p class="larger">Result: the derivative of <b> x<sup>3</sup></b> is <b>3x<sup>2</sup></b></p>
</div>
<p>Have a play with it using the <a href="derivative-plotter.html">Derivative Plotter</a>.</p>
<p>&nbsp;</p>
<h2>Derivatives of Other Functions</h2>
<p>We can use the same method to work out derivatives of other functions (like sine, cosine, logarithms, etc).</p>
<div class="center80">
<p class="center">But <b>in practice</b> the usual way to find derivatives is to use:</p>
<p class="center large"><a href="derivatives-rules.html">Derivative Rules</a></p>
</div><p>&nbsp;</p>
<div class="example">
<h3>Example: what is the derivative of sin(x) ?</h3>
<p>On <a href="derivatives-rules.html">Derivative Rules</a> it is listed as being <span class="large">cos(x)</span></p>
<p>Done.</p>
</div>
<p>But using the rules can be tricky!</p>
<div class="example">
<h3>Example: what is the derivative of cos(x)sin(x) ?</h3>
<p>We get a <b>wrong </b>answer if we try to multiply the derivative of cos(x) by the derivative of sin(x) ... !</p>
<p>Instead we use the "Product Rule" as explained on the <a href="derivatives-rules.html">Derivative Rules</a> page.</p>
<p>And it actually works out to be <span class="large">cos<sup>2</sup>(x) sin<sup>2</sup>(x)</span></p>
</div>
<p>So that is your next step: learn how to use the rules.</p>
<p>&nbsp;</p>
<h2>Notation</h2>
<p>"Shrink towards zero" is actually written as a <a href="limits.html">limit</a> like this:</p>
<div class="center larger">f(x) = <span class="lim"><em>lim</em><strong>Δx→0</strong></span> <span class="intbl"><em>f(x+Δx) f(x)</em><strong>Δx</strong></span></div>
<!-- f'(x) = LIM[DELx->0] f(x+DELx)-f(x)/DELx -->
<p class="center">
"The derivative of <b>f</b> equals <br><b>the limit as <span class="large">Δ</span>x goes to zero</b> of <span class="large">f(x+Δx) - f(x) over </span><span class="large">Δx</span>"</p>
<p>&nbsp;</p>
<p>Or sometimes the derivative is written like this<span class="center"> (explained on <a href="derivatives-dy-dx.html">Derivatives as dy/dx</a></span>):</p>
<div class="center larger"><span class="intbl"><em>dy</em><strong>dx</strong></span> = <span class="intbl"><em>f(x+dx) f(x)</em><strong>dx</strong></span></div>
<!-- dy/dx = f(x+dx)-f(x)/dx -->
<p>&nbsp;</p>
<p>The process of finding a derivative is called "differentiation".</p>
<div class="words">
<p>You <b>do</b> differentiation ... to <b>get</b> a derivative.</p>
</div>
<h2>Where to Next?</h2>
<p>Go and learn how to find derivatives using <a href="derivatives-rules.html">Derivative Rules</a>, and get plenty of practice:</p>
<div class="questions">
<script>getQ(6790, 6791, 6792, 6793, 6794, 6795, 6796, 6797, 6798, 6799);</script>&nbsp;
</div>
<div class="related">
<a href="derivatives-rules.html">Derivative Rules</a>
<a href="index.html">Calculus Index</a>
</div>
<!-- #EndEditable -->
</article>
<div id="adend" class="centerfull noprint"></div>
<footer id="footer" class="centerfull noprint"></footer>
<div id="copyrt">Copyright © 2020 MathsIsFun.com</div>
</div>
</body><!-- #EndTemplate -->
<!-- Mirrored from www.mathsisfun.com/calculus/derivatives-introduction.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:38:56 GMT -->
</html>