Lucas Kent e39465ad2f Changes to be committed:
new file:   Files/flashplayer_32_sa.exe
	new file:   favicon.ico
	new file:   globe.gif
	new file:   imgs/download.png
	new file:   imgs/zuck.jpg
	new file:   index.html
	new file:   other.ico
	new file:   script.js
	new file:   site.webmanifest
	new file:   sitemap.html
	new file:   styles/backround.css
	new file:   styles/border.css
	new file:   styles/fonts/Titillium_Web/OFL.txt
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf
	new file:   styles/fonts/webfontkit-20221027-163353/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2
	new file:   styles/fonts/webfontkit-20221027-165950/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2
	new file:   styles/style.css
	new file:   tools/2048/.gitignore
	new file:   tools/2048/.jshintrc
	new file:   tools/2048/CONTRIBUTING.md
	new file:   tools/2048/LICENSE.txt
	new file:   tools/2048/README.md
	new file:   tools/2048/Rakefile
	new file:   tools/2048/favicon.ico
	new file:   tools/2048/index.html
	new file:   tools/2048/js/animframe_polyfill.js
	new file:   tools/2048/js/application.js
	new file:   tools/2048/js/bind_polyfill.js
	new file:   tools/2048/js/classlist_polyfill.js
	new file:   tools/2048/js/game_manager.js
	new file:   tools/2048/js/grid.js
	new file:   tools/2048/js/html_actuator.js
	new file:   tools/2048/js/keyboard_input_manager.js
	new file:   tools/2048/js/local_storage_manager.js
	new file:   tools/2048/js/tile.js
    new file:   tools/2048/meta/apple-touch-icon.png
	new file:   tools/webretro/cores/neocd_libretro.js
	new file:   tools/webretro/cores/neocd_libretro.wasm
	new file:   tools/webretro/cores/nestopia_libretro.js
	new file:   tools/webretro/cores/nestopia_libretro.wasm
	new file:   tools/webretro/cores/o2em_libretro.js
	new file:   tools/webretro/cores/o2em_libretro.wasm
	new file:   tools/webretro/cores/opera_libretro.js
	new file:   tools/webretro/cores/opera_libretro.wasm
2022-11-02 08:40:01 -04:00

533 lines
22 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html lang="en"><!-- #BeginTemplate "/Templates/Advanced.dwt" --><!-- DW6 -->
<!-- Mirrored from www.mathsisfun.com/algebra/sequences-series.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:48:50 GMT -->
<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
<!-- #BeginEditable "doctitle" -->
<title>Sequences</title>
<meta name="Description" content="Math explained in easy language, plus puzzles, games, quizzes, worksheets and a forum. For K-12 kids, teachers and parents.">
<!-- #EndEditable -->
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
<meta name="HandheldFriendly" content="true">
<meta name="referrer" content="always">
<link rel="preload" href="../images/style/font-champ-bold.ttf" as="font" type="font/ttf" crossorigin="">
<link rel="preload" href="../style4.css" as="style">
<link rel="preload" href="../main4.js" as="script">
<link rel="stylesheet" href="../style4.css">
<script src="../main4.js" defer="defer"></script>
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async="" src="https://www.googletagmanager.com/gtag/js?id=UA-29771508-1"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'UA-29771508-1');
</script>
</head>
<body id="bodybg" class="adv">
<div id="stt"></div>
<div id="adTop"></div>
<header>
<div id="hdr"></div>
<div id="tran"></div>
<div id="adHide"></div>
<div id="cookOK"></div>
</header>
<div class="mid">
<nav>
<div id="menuWide" class="menu"></div>
<div id="logo"><a href="../index.html"><img src="../images/style/logo-adv.svg" alt="Math is Fun Advanced"></a></div>
<div id="search" role="search"></div>
<div id="linkto"></div>
<div id="menuSlim" class="menu"></div>
<div id="menuTiny" class="menu"></div>
</nav>
<div id="extra"></div>
<article id="content" role="main">
<!-- #BeginEditable "Body" -->
<h1 class="center">Sequences</h1>
<p class="center"><i>You can read a gentle introduction to Sequences in <a href="../numberpatterns.html">Common Number Patterns</a>.</i></p>
<h2>What is a Sequence?</h2>
<div class="center80">
<p class="center larger">A Sequence is a list of things (usually numbers) that are in order.</p>
</div>
<p class="center"><img src="images/sequence.svg" alt="Sequence 3,5,7,9,..." style="max-width:100%" height="168" width="422"></p>
<h2>Infinite or Finite</h2>
<p class="center larger">When the sequence goes on forever it is called an <b>infinite sequence</b>,<br>
otherwise it is a <b>finite sequence</b></p>
<div class="example">
<h3>Examples:</h3>
<p>{1, 2, 3, 4, ...} is a very simple sequence (and it is an <b>infinite sequence</b>)</p>
<p>{20, 25, 30, 35, ...} is also an infinite sequence</p>
<p>{1, 3, 5, 7} is the sequence of the first 4 odd numbers (and is a <b>finite sequence</b>)</p>
<p>{4, 3, 2, 1} is 4 to 1 <b>backwards</b></p>
<p>{1, 2, 4, 8, 16, 32, ...} is an infinite sequence where every term doubles</p>
<p>{a, b, c, d, e} is the sequence of the first 5 letters <b>alphabetically</b></p>
<p>{f, r, e, d} is the sequence of letters in the name "fred"</p>
<p>{0, 1, 0, 1, 0, 1, ...} is the sequence of <b>alternating</b> 0s and 1s (yes they are in order, it is an alternating order in this case)</p>
</div>
<h2>In Order</h2>
<p>When we say the terms are "in order", we are free to define <b>what order that is</b>! They could go forwards, backwards ... or they could alternate ... or any type of order we want!</p>
<h2>Like a Set</h2>
<p>A Sequence is like a <a href="../sets/sets-introduction.html">Set</a>, except:</p>
<ul>
<li>the terms are <b>in order</b> (with Sets the order does not matter)</li>
<li>the same value can appear many times (only once in Sets)</li>
</ul>
<div class="example">
<p>Example: {0, 1, 0, 1, 0, 1, ...} is the <b>sequence</b> of alternating 0s and 1s.</p>
<p>The <b>set</b> is just {0,1}</p>
</div>
<h2>Notation</h2>
<table style="border: 0;">
<tbody>
<tr>
<td style="text-align:right;">Sequences also use the same <b>notation</b> as sets:<br>
list each element, separated by a comma,<br>
and then put curly brackets around the whole thing.</td>
<td class="larger" align="center" width="200">{3, 5, 7, ...}</td>
</tr>
</tbody></table>
<div class="def">
<p class="center">The curly brackets <span class="large">{ }</span> are sometimes called "set brackets" or "braces".</p>
</div>
<h2>A Rule</h2>
<p>A Sequence usually has a <b>Rule</b>, which is a way to find the value of each term.</p>
<div class="example">
<p>Example: the sequence {3, 5, 7, 9, ...} starts at 3 and jumps 2 every time:</p>
<p class="center"><img src="images/sequence2.gif" alt="{3, 5, 7, 9, ...}" height="102" width="347"></p>
</div>
<h2>As a Formula</h2>
<p>Saying "<i>starts at 3 and jumps 2 every time</i>" is fine, but it doesn't help us calculate the:</p>
<ul>
<li>10<sup>th</sup> term,</li>
<li>100<sup>th</sup> term, or</li>
<li><i><b>n</b></i><sup>th</sup> term, where <i><b>n</b></i> could be any term number we want.</li>
</ul>
<div class="center80">
<p class="center large">So, we want a formula with "<span class="larger">n</span>" in it (where <span class="larger">n</span> is any term number).</p>
</div>
<h3>So, What Can A Rule For {3, 5, 7, 9, ...} Be?</h3>
<p>Firstly, we can see the sequence goes up 2 every time, so we can <b>guess</b> that a Rule is something like "2 times n" (where "n" is the term number). Let's test it out:</p>
<p class="center large">Test Rule: 2n</p>
<div class="beach">
<table align="center" width="50%" border="0">
<tbody>
<tr style="text-align:center;">
<th>n</th>
<th>Term</th>
<th>Test Rule</th>
</tr>
<tr style="text-align:center;">
<td><b>1</b></td>
<td>3</td>
<td>2<b>n</b> = 2×<b>1</b> = <b>2</b></td>
</tr>
<tr style="text-align:center;">
<td><b>2</b></td>
<td>5</td>
<td>2<b>n</b> = 2×<b>2</b> = <b>4</b></td>
</tr>
<tr style="text-align:center;">
<td><b>3</b></td>
<td>7</td>
<td>2<b>n</b> = 2×<b>3</b> = <b>6</b></td>
</tr>
</tbody></table>
</div>
<p>That <b>nearly</b> worked ... but it is <b>too low</b> by 1 every time, so let us try changing it to:</p>
<p class="center large">Test Rule: 2n+1</p>
<div class="beach">
<table align="center" width="50%" border="0">
<tbody>
<tr style="text-align:center;">
<th>n</th>
<th>Term</th>
<th> Test Rule</th>
</tr>
<tr style="text-align:center;">
<td><b>1</b></td>
<td>3</td>
<td>2<b>n</b>+1 = 2×<b>1</b> + 1 = 3</td>
</tr>
<tr style="text-align:center;">
<td><b>2</b></td>
<td>5</td>
<td>2<b>n</b>+1 = 2×<b>2</b> + 1 = 5</td>
</tr>
<tr style="text-align:center;">
<td><b>3</b></td>
<td>7</td>
<td>2<b>n</b>+1 = 2×<b>3</b> + 1 = 7</td>
</tr>
</tbody></table>
</div>
<p class="center"><b>That Works!</b></p>
<p>So instead of saying "starts at 3 and jumps 2 every time" we write this:</p>
<p class="center larger"><b>2n+1</b></p>
<div class="example">
<p>Now we can calculate, for example, the <b>100th term</b>:</p>
<p class="center">2 × 100 + 1 = <b>201</b></p>
</div>
<h2>Many Rules</h2>
<p>But mathematics is so powerful we can find <b>more than one Rule</b> that works for any sequence.</p>
<div class="example">
<h3>Example: the sequence {3, 5, 7, 9, ...}</h3>
<p>We have just shown a Rule for {3, 5, 7, 9, ...} is: <b>2n+1</b></p>
<p class="center">And so we get: {3, 5, 7, 9, 11, 13, ...}</p>
<p>But can we find another rule?</p>
<p>How about <b>"odd numbers without a 1 in them"</b>:</p>
<p class="center">And we get: {3, 5, 7, 9, 23, 25, ...}</p>
<p><b>A completely different sequence!</b></p>
<p>And we could find more rules that match <b>{3, 5, 7, 9, ...}</b>. Really we could.</p>
</div>
<p>So it is best to say "A Rule" rather than "The Rule" (unless we know it is the right Rule).</p>
<h2>Notation</h2>
<p>To make it easier to use rules, we often use this special style:</p>
<div class="beach">
<table style="border: 0; margin:auto;">
<tbody>
<tr>
<td><img src="images/sequence-term.svg" alt="sequence term" height="85" width="218"></td>
<td>
<ul>
<li class="larger"><b>x<sub>n</sub></b> is the term</li>
<li class="larger"><b>n</b> is the term number</li>
</ul></td>
</tr>
</tbody></table><br>
</div>
<div class="example">
<p>Example: to mention the "5th term" we write: <span class="larger">x<sub>5</sub></span></p>
</div>
<p>So a rule for <b>{3, 5, 7, 9, ...}</b> can be written as an equation like this:</p>
<p class="center large">x<sub>n</sub> = 2n+1</p>
<p>And to calculate the 10th term we can write:</p>
<p class="center larger">x<sub>10</sub> = 2<b>n</b>+1 = 2×<b>10</b>+1 = 21</p>
<p class="center"><i>Can you calculate <span class="larger">x<sub>50</sub></span> (the 50th term) doing this?</i></p>
<p>Here is another example:</p>
<div class="example">
<h3>Example: Calculate the first 4 terms of this sequence:</h3>
<h3 align="center">{a<sub>n</sub>} = { (-1/n)<sup>n</sup> }</h3>
<p>Calculations:</p>
<ul>
<li>a<sub>1</sub> = (-1/1)<sup>1</sup> = -1</li>
<li>a<sub>2</sub> = (-1/2)<sup>2</sup> = 1/4</li>
<li>a<sub>3</sub> = (-1/3)<sup>3</sup> = -1/27</li>
<li>a<sub>4</sub> = (-1/4)<sup>4</sup> = 1/256</li>
</ul>
<p>Answer:</p>
<p class="center larger">{a<sub>n</sub>} = { -1, 1/4, -1/27, 1/256, ... }</p>
</div>
<h2>Special Sequences</h2>
<p>Now let's look at some special sequences, and their rules.</p>
<h2>Arithmetic Sequences</h2>
<p>In an <a href="sequences-sums-arithmetic.html">Arithmetic Sequence</a> <b>the difference between one term and the next is a constant</b>.</p>
<p>In other words, we just add some value each time ... on to infinity.</p>
<div class="example">
<h3>Example:</h3>
<div class="simple">
<table align="center">
<tbody>
<tr>
<td><font class="large" size="+1">1, 4, 7, 10, 13, 16, 19, 22, 25, ...</font></td>
</tr>
</tbody></table>
</div>
<div class="center">
<p>This sequence has a difference of 3 between each number.<br>
Its Rule is <b>x<sub>n</sub> = 3n-2</b></p>
</div>
</div>
<p><b>In General</b> we can write an arithmetic sequence like this:</p>
<p class="center large">{a, a+d, a+2d, a+3d, ... }</p>
<p>where:</p>
<ul>
<li><b>a</b> is the first term, and</li>
<li><b>d</b> is the difference between the terms (called the <b>"common difference"</b>)</li>
</ul>
<p>And we can make the rule:</p>
<p class="center"><span class="large">x<sub>n</sub> = a + d(n-1)</span></p>
<p class="center">(We use "n-1" because <b>d</b> is not used in the 1st term).</p>
<h2>Geometric Sequences</h2>
<p>In a <a href="sequences-sums-geometric.html">Geometric Sequence</a> each term is found by <b>multiplying</b> the previous term by a <b>constant</b>.</p>
<div class="example">
<h3>Example:</h3>
<div class="simple">
<table align="center">
<tbody>
<tr>
<td><font size="+1">2, 4, 8, 16, 32, 64, 128, 256</font><font class="large" size="+1">, ...</font></td>
</tr>
</tbody></table>
</div>
<p class="center">This sequence has a factor of 2 between each number.<br>
Its Rule is <b>x<sub>n</sub> = 2<sup>n</sup></b></p>
</div>
<p><b>In General</b> we can write a geometric sequence like this:</p>
<p class="center large">{a, ar, ar<sup>2</sup>, ar<sup>3</sup>, ... }</p>
<p>where:</p>
<ul>
<li><b>a</b> is the first term, and</li>
<li><b>r</b> is the factor between the terms (called the <b>"common ratio"</b>)</li>
</ul>
<div class="center80">
<p>Note: <b>r</b> should not be 0.</p>
<ul>
<li>When <b>r=0</b>, we get the sequence {a,0,0,...} which is not geometric</li>
</ul>
</div>
<p>And the rule is:</p>
<p class="center large">x<sub>n</sub> = ar<sup>(n-1)</sup></p>
<p class="center">(We use "n-1" because <span class="large">ar<sup>0</sup></span> is the 1st term)</p>
<h2><a name="triangular" id="triangular"></a>Triangular Numbers</h2>
<div class="simple">
<table align="center">
<tbody>
<tr>
<td><font size="+1">1, 3, 6, 10, 15, 21, 28, 36, 45</font><font class="large" size="+1">, ...</font></td>
</tr>
</tbody></table>
</div>
<p>The <a href="triangular-numbers.html">Triangular Number Sequence</a> is generated from a pattern of dots which form a
triangle:</p>
<p class="center"><img src="../numbers/images/triangular-number-dots.svg" alt="triangular numbers" style="max-width:100%" height="177" width="473"></p>
<p>By adding another row of dots and counting all the dots we can find
the next number of the sequence.</p>
<center>
<p align="left">But it is easier to use this Rule:</p>
<p class="large">x<sub>n</sub> = n(n+1)/2</p>
</center>
<div class="example">
<p>Example:</p>
<ul>
<li>the 5th Triangular Number is x<sub>5</sub> = 5(5+1)/2 = <b>15</b>,</li>
<li>and the sixth is x<sub>6</sub> = 6(6+1)/2 = <b>21</b></li>
</ul>
</div>
<h2>Square Numbers</h2>
<div class="simple">
<table align="center">
<tbody>
<tr>
<td><font size="+1">1, 4, 9, 16, 25, 36, 49, 64, 81</font><font class="large" size="+1">, ...</font></td>
</tr>
</tbody></table>
</div>
<p>The next number is made by squaring where it is in the pattern.</p>
<p class="center larger">Rule is<b> x<sub>n</sub> = n<sup>2</sup></b></p>
<p>&nbsp;</p>
<h2>Cube Numbers</h2>
<div class="simple">
<table align="center">
<tbody>
<tr>
<td><font size="+1">1, 8, 27, 64, 125, 216, 343, 512, 729</font><font class="large" size="+1">, ...</font></td>
</tr>
</tbody></table>
</div>
<p>The next number is made by cubing where it is in the pattern.</p>
<p class="center larger">Rule is<b> x<sub>n</sub> = n<sup>3</sup></b></p>
<p>&nbsp;</p>
<h2>Fibonacci Sequence</h2>
<div class="simple">
<p>This is the <a href="../numbers/fibonacci-sequence.html">Fibonacci Sequence</a></p>
<table align="center">
<tbody>
<tr>
<td><font size="+1">0, 1, 1, 2, 3, 5, 8, 13, 21, 34</font><font class="large" size="+1">, ...</font></td>
</tr>
</tbody></table>
</div>
<p>The next number is found by <b>adding the two numbers before it</b> together:</p>
<ul>
<li>The 2 is found by adding the two numbers before it (1+1)</li>
<li>The 21 is found by adding the two numbers before it (8+13)</li>
<li>etc...</li>
</ul>
<p class="center larger">Rule is <b> x<sub>n</sub> = x<sub>n-1</sub> + x<sub>n-2</sub></b></p>
<p>That rule is interesting because it depends on the values of the previous two terms.</p>
<div class="words">
<p>Rules like that are called <b>recursive</b> formulas.</p>
</div>
<p>The Fibonacci Sequence is numbered <b>from 0 onwards</b> like this:</p>
<div class="beach">
<table align="center" cellspacing="0" cellpadding="0">
<tbody>
<tr>
<td style="text-align:center; width:60px;"><i>n =</i></td>
<td style="text-align:center; width:35px;"><i>0</i></td>
<td style="text-align:center; width:35px;"><i>1</i></td>
<td style="text-align:center; width:35px;"><i>2</i></td>
<td style="text-align:center; width:35px;"><i>3</i></td>
<td style="text-align:center; width:35px;"><i>4</i></td>
<td style="text-align:center; width:35px;"><i>5</i></td>
<td style="text-align:center; width:35px;"><i>6</i></td>
<td style="text-align:center; width:35px;"><i>7</i></td>
<td style="text-align:center; width:35px;"><i>8</i></td>
<td style="text-align:center; width:35px;"><i>9</i></td>
<td style="text-align:center; width:35px;"><i>10</i></td>
<td style="text-align:center; width:35px;"><i>11</i></td>
<td style="text-align:center; width:35px;"><i>12</i></td>
<td style="text-align:center; width:35px;"><i>13</i></td>
<td style="text-align:center; width:35px;"><i>14</i></td>
<td style="text-align:center; width:35px;"><i>...</i></td>
</tr>
<tr class="large">
<td style="text-align:center; width:60px;">x<sub>n</sub> =</td>
<td style="text-align:center; width:35px;">0</td>
<td style="text-align:center; width:35px;">1</td>
<td style="text-align:center; width:35px;">1</td>
<td style="text-align:center; width:35px;">2</td>
<td style="text-align:center; width:35px;">3</td>
<td style="text-align:center; width:35px;">5</td>
<td style="text-align:center; width:35px;">8</td>
<td style="text-align:center; width:35px;">13</td>
<td style="text-align:center; width:35px;">21</td>
<td style="text-align:center; width:35px;">34</td>
<td style="text-align:center; width:35px;">55</td>
<td style="text-align:center; width:35px;">89</td>
<td style="text-align:center; width:35px;">144</td>
<td style="text-align:center; width:35px;">233</td>
<td style="text-align:center; width:35px;">377</td>
<td style="text-align:center; width:35px;">...</td>
</tr>
</tbody></table>
</div>
<p>&nbsp;</p>
<div class="example">
<p>Example: term "6" is calculated like this:</p>
<p class="center"><b> x<sub>6</sub> = x<sub>6-1</sub> + x<sub>6-2</sub> = x<sub>5</sub> + x<sub>4</sub> = 5 + 3 = 8</b></p>
</div>
<h2>Series and Partial Sums</h2>
<p>Now you know about sequences, the next thing to learn about is how to sum them up. Read our page on <a href="partial-sums.html">Partial Sums</a>.</p>
<div class="words">
<p>When we <b>sum</b> up just <b>part</b> of a sequence it is called a <a href="partial-sums.html">Partial Sum</a>.</p>
<p>But a <b>sum</b> of an <b>infinite</b> sequence it is called a "Series" (it sounds like another name for sequence, but it is actually a sum). See <a href="infinite-series.html">Infinite Series</a>.</p>
</div>
<div class="example">
<h3>Example: Odd numbers</h3>
<p class="center">Sequence: <b>{1, 3, 5, 7, ...}</b></p>
<p class="center">Series: <b>1 + 3 + 5 + 7 + ...</b></p>
<p class="center">Partial Sum of first 3 terms: <b>1 + 3 + 5</b></p>
</div>
<p>&nbsp;</p>
<div class="questions">595, 1242, 596, 1243, 597, 3009, 3010, 1244, 3011, 3012</div>
<div class="related">
<a href="sequences-finding-rule.html">Sequences - Finding a Rule</a>
<a href="../numberpatterns.html">Common Number Patterns</a>
<a href="sequence-diff-tool.html">Sequence Differences Tool</a>
<a href="infinite-series.html">Infinite Series</a>
<a href="index.html">Algebra Index</a>
</div>
<!-- #EndEditable -->
</article>
<div id="adend" class="centerfull noprint"></div>
<footer id="footer" class="centerfull noprint"></footer>
<div id="copyrt">Copyright © 2021 MathsIsFun.com</div>
</div>
</body><!-- #EndTemplate -->
<!-- Mirrored from www.mathsisfun.com/algebra/sequences-series.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:48:51 GMT -->
</html>