Lucas Kent e39465ad2f Changes to be committed:
new file:   Files/flashplayer_32_sa.exe
	new file:   favicon.ico
	new file:   globe.gif
	new file:   imgs/download.png
	new file:   imgs/zuck.jpg
	new file:   index.html
	new file:   other.ico
	new file:   script.js
	new file:   site.webmanifest
	new file:   sitemap.html
	new file:   styles/backround.css
	new file:   styles/border.css
	new file:   styles/fonts/Titillium_Web/OFL.txt
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf
	new file:   styles/fonts/webfontkit-20221027-163353/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2
	new file:   styles/fonts/webfontkit-20221027-165950/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2
	new file:   styles/style.css
	new file:   tools/2048/.gitignore
	new file:   tools/2048/.jshintrc
	new file:   tools/2048/CONTRIBUTING.md
	new file:   tools/2048/LICENSE.txt
	new file:   tools/2048/README.md
	new file:   tools/2048/Rakefile
	new file:   tools/2048/favicon.ico
	new file:   tools/2048/index.html
	new file:   tools/2048/js/animframe_polyfill.js
	new file:   tools/2048/js/application.js
	new file:   tools/2048/js/bind_polyfill.js
	new file:   tools/2048/js/classlist_polyfill.js
	new file:   tools/2048/js/game_manager.js
	new file:   tools/2048/js/grid.js
	new file:   tools/2048/js/html_actuator.js
	new file:   tools/2048/js/keyboard_input_manager.js
	new file:   tools/2048/js/local_storage_manager.js
	new file:   tools/2048/js/tile.js
    new file:   tools/2048/meta/apple-touch-icon.png
	new file:   tools/webretro/cores/neocd_libretro.js
	new file:   tools/webretro/cores/neocd_libretro.wasm
	new file:   tools/webretro/cores/nestopia_libretro.js
	new file:   tools/webretro/cores/nestopia_libretro.wasm
	new file:   tools/webretro/cores/o2em_libretro.js
	new file:   tools/webretro/cores/o2em_libretro.wasm
	new file:   tools/webretro/cores/opera_libretro.js
	new file:   tools/webretro/cores/opera_libretro.wasm
2022-11-02 08:40:01 -04:00

362 lines
15 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html lang="en"><!-- #BeginTemplate "/Templates/Main.dwt" --><!-- DW6 -->
<!-- Mirrored from www.mathsisfun.com/algebra/proportions.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:48:23 GMT -->
<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
<!-- #BeginEditable "doctitle" -->
<title>Proportions</title>
<meta name="description" content="Proportion says that two ratios (or fractions) are equal">
<script language="JavaScript" type="text/javascript">reSpell=[["meters","metres"]];</script>
<style type="text/css">
.known {
color: #0000FF;
font-weight: 500;
}
.unknown {
color: #800000;
font-weight: 500;
}
</style>
<!-- #EndEditable -->
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
<meta name="HandheldFriendly" content="true">
<meta name="referrer" content="always">
<link rel="preload" href="../images/style/font-champ-bold.ttf" as="font" type="font/ttf" crossorigin="">
<link rel="preload" href="../style4.css" as="style">
<link rel="preload" href="../main4.js" as="script">
<link rel="stylesheet" href="../style4.css">
<script src="../main4.js" defer="defer"></script>
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async="" src="https://www.googletagmanager.com/gtag/js?id=UA-29771508-1"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'UA-29771508-1');
</script>
</head>
<body id="bodybg">
<div id="stt"></div>
<div id="adTop"></div>
<header>
<div id="hdr"></div>
<div id="tran"></div>
<div id="adHide"></div>
<div id="cookOK"></div>
</header>
<div class="mid">
<nav>
<div id="menuWide" class="menu"></div>
<div id="logo"><a href="../index.html"><img src="../images/style/logo.svg" alt="Math is Fun"></a></div>
<div id="search" role="search"></div>
<div id="linkto"></div>
<div id="menuSlim" class="menu"></div>
<div id="menuTiny" class="menu"></div>
</nav>
<div id="extra"></div>
<article id="content" role="main">
<!-- #BeginEditable "Body" -->
<h1 class="center">Proportions</h1>
<p><span class="center">Proportion</span> says that two <a href="../numbers/ratio.html">ratios</a> (or fractions) are equal.</p>
<div class="example">
<h3>Example:</h3>
<p class="center"><img src="images/proportion.svg" alt="proportion 1/3 : 2/6" height="" width=""></p>
<p>We see that <b>1-out-of-3</b> is equal to <b>2-out-of-6</b></p>
<p>The ratios are the same, so they are in proportion.</p>
</div>
<div class="example">
<h3>Example: Rope</h3>
<p>A rope's <b>length</b> and <b>weight</b> are in proportion.</p>
<p>When <b>20m</b> of rope weighs <b>1kg</b>,&nbsp;then:</p>
<ul>
<li><b>40m</b> of that rope weighs <b>2kg</b></li>
<li><b>200m</b> of that rope weighs <b>10kg</b></li>
<li>etc.</li>
</ul>
<p class="center"><img src="images/proportional-rope.svg" alt="rope 20m / 1kg : 40m / 2kg" height="" width=""></p>
<p>So:</p>
<p class="center large"><span class="intbl">
<em>20</em>
<strong>1</strong>
</span> = <span class="intbl">
<em>40</em>
<strong>2</strong>
</span></p>
</div>
<h3>Sizes</h3>
<p>When shapes are "in proportion" their relative sizes are the same.</p>
<table width="100%" border="0">
<tbody>
<tr>
<td>
<p>Here we see that the ratios of head length to body length are the same in both drawings.</p>
<p>So they are <b>proportional</b>.</p>
<p>Making the head too long or short would look bad!</p></td>
<td><img src="images/proportion-1a.gif" alt="proportion 10/20 : 15/30" height="184" width="261"></td>
</tr>
</tbody></table>
<div class="example">
<h3>Example: <a href="../geometry/paper-sizes.html">International paper sizes</a> (like A3, A4, A5, etc) all have the same proportions:</h3>
<p class="center"><img src="../geometry/images/paper-size-resize.svg" alt="paper size resize" height="223" width="487"></p>
<p>So any artwork or document can be resized to fit on any sheet. Very neat.</p>
</div>
<h2>Working With Proportions</h2>
<p>NOW, how do we use this?</p>
<div class="example">
<h3>Example: you want to draw the dog's head ... how long should it be?</h3>
<p class="center"><img src="images/proportion-2.gif" alt="proportion dog" height="146" width="242"></p>
<p>Let us write the proportion with the help of the 10/20 ratio from above:</p>
<p class="center larger"><span class="intbl">
<em>?</em>
<strong>42</strong>
</span> = <span class="intbl">
<em>10</em>
<strong>20</strong>
</span></p>
<p>Now
we solve it using a special method:</p>
<p class="center"><img src="images/proportion-3.svg" alt="?/42 : 10/20" height="68" width="189"></p>
<p class="center larger">Multiply across the known corners,<br>
then divide by the third number</p>
<p>And we get this:</p>
<p class="center large">? = (42 × 10) / 20<br>
= 420 / 20<br>
= <b>21</b></p>
<p>So you should draw the head <b>21</b> long.</p>
</div>
<p>&nbsp;</p>
<h2>Using Proportions to Solve Percents</h2>
<p>A percent is actually a ratio! Saying "25%" is actually saying "25 per 100":</p>
<p class="center large">25% = <span class="intbl"><em>25</em><strong>100</strong></span></p>
<p>We can use proportions to solve questions involving percents.</p>
<p>The trick is to put what we know into this form:</p>
<p class="center large"><span class="intbl"><em>Part</em><strong>Whole</strong></span> = <span class="intbl"><em>Percent</em><strong>100</strong></span></p>
<p>&nbsp;</p>
<div class="example">
<h3>Example: what is 25% of 160 ?</h3>
<p>The percent is 25, the whole is 160, and we want to find the "part":</p>
<p class="center large"><span class="intbl"><em>Part</em><strong>160</strong></span> = <span class="intbl"><em>25</em><strong>100</strong></span></p>
<p>Multiply across the known corners, then divide by the third number:</p>
<p class="center"><img src="images/proportion-6.svg" alt="Part/160 : 25/100" height="68" width="219"></p>
<p class="center large">Part = (160 × 25) / 100<br>
= 4000 / 100<br>
= <b>40</b></p>
<p><b>Answer: 25% of 160 is 40.</b></p>
<p>&nbsp;</p>
<p>Note: we could have also solved this by doing the divide first, like this:</p>
<p class="center large">Part = 160 × (25 / 100)<br>
= 160 × 0.25<br>
= <b>40</b></p>
<p>Either method works fine.</p>
</div>
<p>We can also find a Percent:</p>
<div class="example">
<h3>Example: what is $12 as a percent of $80 ?</h3>
<p>Fill in what we know:</p>
<p class="center large"><span class="intbl"><em>$12</em><strong>$80</strong></span> = <span class="intbl"><em>Percent</em><strong>100</strong></span></p>
<p>Multiply across the known corners, then divide by the third number. This time the known corners are top left and bottom right:</p>
<p class="center"><img src="images/proportion-7.svg" alt="$12/$80 : Percent/100" height="66" width="245"></p>
<p class="center large">Percent = ($12 × 100) / $80<br>
= 1200 / 80<br>
= <b>15%</b></p>
<p>Answer: $12 is <b>15%</b> of $80</p>
</div>
<p>Or find the Whole:</p>
<div class="example">
<h3>Example: The sale price of a phone was $150, which was only 80% of normal price. What was the normal price?</h3>
<p>Fill in what we know:</p>
<p class="center large"><span class="intbl"><em>$150</em><strong>Whole</strong></span> = <span class="intbl"><em>80</em><strong>100</strong></span></p>
<p>Multiply across the known corners, then divide by the third number:</p>
<p class="center"><img src="images/proportion-8.svg" alt="$150/whole : 80/100" height="63" width="236"></p>
<p class="center large">Whole = ($150 × 100) / 80<br>
= 15000 / 80<br>
= <b>187.50</b></p>
<p>Answer: the phone's normal price was <b>$187.50</b></p>
</div>
<h2>Using Proportions to Solve Triangles</h2>
<p>We can use proportions to solve similar triangles.</p>
<div class="example">
<h3>Example: How tall is the Tree?</h3>
<p>Sam tried using a ladder, tape measure, ropes and various other things, but still couldn't work out how tall the tree was.</p>
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/proportion-4.jpg" alt="proportion tree " height="198" width="273"></p>
<p>But then Sam has a clever idea ... similar triangles!</p>
<p>Sam measures a stick and its shadow (in meters), and also the shadow of the tree, and this is what he gets:</p>
<div style="clear:both"></div>
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/proportion-5.gif" alt="proportion " height="143" width="222"></p>
<p>Now Sam makes a sketch of the triangles, and writes down the "Height to Length" ratio for both triangles:</p>
<p class="center larger"><span class="intbl">
<em>Height:</em>
<strong>Shadow Length:</strong></span> &nbsp; &nbsp; <span class="intbl"><em>h</em>
<strong>2.9 m</strong></span> = <span class="intbl">
<em>2.4 m</em>
<strong>1.3 m</strong></span></p>
<p>Multiply across the known corners, then divide by the third number:</p>
<p class="center large">h = (2.9 × 2.4) / 1.3<br>
= 6.96 / 1.3<br>
= <b>5.4 m</b> (to nearest 0.1)</p>
<p><b>Answer: the tree is 5.4 m tall.</b></p>
<p>And he didn't even need a ladder!</p>
</div>
<p>The "Height" could have been at the bottom, so long as it was on the bottom for BOTH ratios, like this:</p>
<div class="example">
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/proportion-5.gif" alt="proportion " height="143" width="222"></p>
<p>Let us try the ratio of "Shadow Length to Height":</p>
<p class="center larger"><span class="intbl">
<em>Shadow Length:</em>
<strong>Height:</strong></span> &nbsp; &nbsp; <span class="intbl">
<em>2.9 m</em>
<strong>h</strong></span> = <span class="intbl">
<em>1.3 m</em>
<strong>2.4 m</strong></span></p>
<p>Multiply across the known corners, then divide by the third number:</p>
<p class="center large">h = (2.9 × 2.4) / 1.3<br>
= 6.96 / 1.3<br>
= <b>5.4 m</b> (to nearest 0.1)</p>
<p><b>It is the same calculation as before.</b></p>
</div>
<h2>A "Concrete" Example</h2>
<p>Ratios can have <b>more than two numbers</b>!</p>
<p>For example concrete is made by mixing cement, sand, stones and water.</p>
<p style="float:left; margin: 0 30px 5px 0;"><img src="../numbers/images/concrete-pouring.jpg" alt="concrete pouring" height="150" width="200"></p>
<p>A typical mix of cement, sand and stones is written as a ratio, such as <span class="large">1:2:6</span>.</p>
<p>We can multiply all values by the same amount and still have the same ratio.</p>
<p class="center large">10:20:60 is the same as 1:2:6</p>
<p>So when we use 10 buckets of cement, we should use 20 of sand and 60 of stones.</p>
<div class="example">
<h3>Example: you have just put 12 buckets of stones into a mixer, how much cement and how much sand should you add to make a <span class="large">1:2:6</span> mix?</h3>
<p>Let us lay it out in a table to make it clearer:</p>
<table style="border: 0; margin:auto;">
<tbody>
<tr style="text-align:center;">
<th width="160">&nbsp;</th>
<th width="80">Cement</th>
<th width="80">Sand</th>
<th width="80">Stones</th>
</tr>
<tr style="text-align:center;">
<th width="160">Ratio Needed:</th>
<td class="large" width="80">1</td>
<td class="large" width="80">2</td>
<td class="large" width="80">6</td>
</tr>
<tr style="text-align:center;">
<th width="160">You Have:</th>
<td class="large bga1" width="80" >&nbsp;</td>
<td class="large bga1" width="80" >&nbsp;</td>
<td class="large" width="80">12</td>
</tr>
</tbody></table>
<p>You have 12 buckets of stones but the ratio says 6.</p>
<p>That is OK, you simply have twice as many stones as the number in the ratio ... so you need twice as much of <b>everything</b> to keep the ratio.</p>
<p>Here is the solution:</p>
<table style="border: 0; margin:auto;">
<tbody>
<tr style="text-align:center;">
<th width="160">&nbsp;</th>
<th width="80">Cement</th>
<th width="80">Sand</th>
<th width="80">Stones</th>
</tr>
<tr style="text-align:center;">
<th width="160">Ratio Needed:</th>
<td class="large" width="80">1</td>
<td class="large" width="80">2</td>
<td class="large" width="80">6</td>
</tr>
<tr style="text-align:center;">
<th width="160">You Have:</th>
<td class="large bga1" width="80">2</td>
<td class="large bga1" width="80">4</td>
<td class="large" width="80">12</td>
</tr>
</tbody></table>
<p>And the ratio 2:4:12 is the same as 1:2:6 (because they show the same <i><b>relative</b></i> sizes)</p>
<p>So the answer is: add 2 buckets of Cement and 4 buckets of Sand. <i>(You will also need water and a lot of stirring....)</i></p>
</div>
<p><i>Why are they the same ratio?</i> <i>Well, the <b>1:2:6</b> ratio says to have</i>:</p>
<ul>
<li><i> twice as much Sand as Cement (<span class="hilite">1</span>:<span class="hilite">2</span>:6)</i></li>
<li><i>6 times as much Stones as Cement (<span class="hilite">1</span>:2:<span class="hilite">6</span>)</i></li>
</ul>
<p><i>In our mix we have:</i></p>
<ul>
<li><i> twice as much Sand as Cement (<span class="hilite">2</span>:<span class="hilite">4</span>:12)</i></li>
<li><i>6 times as much Stones as Cement (<span class="hilite">2</span>:4:<span class="hilite">12</span>)</i></li>
</ul>
<p><i>So it should be just right!</i></p>
<p>That is the good thing about ratios. You can make the amounts bigger or smaller and so long as the <b>relative</b> sizes are the same then the ratio is the same.</p>
<p>&nbsp;</p>
<p>&nbsp;</p>
<div class="questions">5674, 5676, 5678, 5680, 5682, 5684, 5686, 5688, 5690, 5692</div>
<div class="related">
<a href="../numbers/ratio.html">Ratios</a>
<a href="directly-inversely-proportional.html">Directly Proportional and Inversely Proportional</a>
<a href="index.html">Algebra Index</a>
</div>
<!-- #EndEditable -->
</article>
<div id="adend" class="centerfull noprint"></div>
<footer id="footer" class="centerfull noprint"></footer>
<div id="copyrt">Copyright © 2022 Rod Pierce</div>
</div>
</body><!-- #EndTemplate -->
<!-- Mirrored from www.mathsisfun.com/algebra/proportions.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:48:25 GMT -->
</html>