lkarch.org/tools/mathisfun/www.mathsisfun.com/algebra/line-equation-2points.html
Lucas Kent e39465ad2f Changes to be committed:
new file:   Files/flashplayer_32_sa.exe
	new file:   favicon.ico
	new file:   globe.gif
	new file:   imgs/download.png
	new file:   imgs/zuck.jpg
	new file:   index.html
	new file:   other.ico
	new file:   script.js
	new file:   site.webmanifest
	new file:   sitemap.html
	new file:   styles/backround.css
	new file:   styles/border.css
	new file:   styles/fonts/Titillium_Web/OFL.txt
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf
	new file:   styles/fonts/webfontkit-20221027-163353/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2
	new file:   styles/fonts/webfontkit-20221027-165950/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2
	new file:   styles/style.css
	new file:   tools/2048/.gitignore
	new file:   tools/2048/.jshintrc
	new file:   tools/2048/CONTRIBUTING.md
	new file:   tools/2048/LICENSE.txt
	new file:   tools/2048/README.md
	new file:   tools/2048/Rakefile
	new file:   tools/2048/favicon.ico
	new file:   tools/2048/index.html
	new file:   tools/2048/js/animframe_polyfill.js
	new file:   tools/2048/js/application.js
	new file:   tools/2048/js/bind_polyfill.js
	new file:   tools/2048/js/classlist_polyfill.js
	new file:   tools/2048/js/game_manager.js
	new file:   tools/2048/js/grid.js
	new file:   tools/2048/js/html_actuator.js
	new file:   tools/2048/js/keyboard_input_manager.js
	new file:   tools/2048/js/local_storage_manager.js
	new file:   tools/2048/js/tile.js
    new file:   tools/2048/meta/apple-touch-icon.png
	new file:   tools/webretro/cores/neocd_libretro.js
	new file:   tools/webretro/cores/neocd_libretro.wasm
	new file:   tools/webretro/cores/nestopia_libretro.js
	new file:   tools/webretro/cores/nestopia_libretro.wasm
	new file:   tools/webretro/cores/o2em_libretro.js
	new file:   tools/webretro/cores/o2em_libretro.wasm
	new file:   tools/webretro/cores/opera_libretro.js
	new file:   tools/webretro/cores/opera_libretro.wasm
2022-11-02 08:40:01 -04:00

246 lines
11 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html lang="en"><!-- #BeginTemplate "/Templates/Main.dwt" --><!-- DW6 -->
<!-- Mirrored from www.mathsisfun.com/algebra/line-equation-2points.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:59:05 GMT -->
<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
<!-- #BeginEditable "doctitle" -->
<title>Equation of a Line from 2 Points</title>
<meta name="Description" content="Math explained in easy language, plus puzzles, games, quizzes, worksheets and a forum. For K-12 kids, teachers and parents.">
<!-- #EndEditable -->
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
<meta name="HandheldFriendly" content="true">
<meta name="referrer" content="always">
<link rel="preload" href="../images/style/font-champ-bold.ttf" as="font" type="font/ttf" crossorigin="">
<link rel="preload" href="../style4.css" as="style">
<link rel="preload" href="../main4.js" as="script">
<link rel="stylesheet" href="../style4.css">
<script src="../main4.js" defer="defer"></script>
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async="" src="https://www.googletagmanager.com/gtag/js?id=UA-29771508-1"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'UA-29771508-1');
</script>
</head>
<body id="bodybg">
<div id="stt"></div>
<div id="adTop"></div>
<header>
<div id="hdr"></div>
<div id="tran"></div>
<div id="adHide"></div>
<div id="cookOK"></div>
</header>
<div class="mid">
<nav>
<div id="menuWide" class="menu"></div>
<div id="logo"><a href="../index.html"><img src="../images/style/logo.svg" alt="Math is Fun"></a></div>
<div id="search" role="search"></div>
<div id="linkto"></div>
<div id="menuSlim" class="menu"></div>
<div id="menuTiny" class="menu"></div>
</nav>
<div id="extra"></div>
<article id="content" role="main">
<!-- #BeginEditable "Body" -->
<h1 class="center">Equation of a Line from 2 Points</h1>
<p>First, let's see it in action. Here are two points (you can drag them) and the equation of the line through them. Explanations follow.</p>
<div class="script" style="height: 360px;">
../geometry/images/geom-line-equn.js
</div>
<h2>The Points</h2>
<p>We use <a href="../data/cartesian-coordinates.html">Cartesian Coordinates</a> to mark
a point
on a graph by <b>how far along</b> and <b>how far up</b> it is:</p>
<p class="center"><img src="../geometry/images/coordinates-cartesian.svg" alt="graph with point (12,5)" height="232" width="348"><br>
Example: The point <b>(12,5)</b> is 12 units along, and 5 units up</p>
<h2>Steps</h2>
<p>There are 3 steps to find the <a href="../equation_of_line.html">Equation of the Straight Line</a> :</p>
<ul>
<li>1. Find the slope of the line</li>
<li>2. Put the slope and one point into the "Point-Slope Formula"</li>
<li>3. Simplify</li>
</ul>
<h2>Step 1: Find the Slope (or Gradient) from 2 Points</h2>
<p>What is the <a href="../geometry/slope.html">slope</a> (or gradient) of this line?</p>
<p class="center"><img src="images/graph-2-points.gif" alt="graph 2 points" height="190" width="220"></p>
<p>We know two points:</p>
<ul>
<li>point "A" is <span class="large">(6,4)</span> (at x is 6, y is 4)</li>
<li>point "B" is <span class="large">(2,3)</span> (at x is 2, y is 3)</li>
</ul>
<p>The slope is the <b>change in height</b> divided by the <b>change in horizontal distance</b>.</p>
<p>Looking at this diagram ...</p>
<p class="center"><img src="images/graph-2-points-b.gif" alt="graph 2 points" height="188" width="302"></p>
<p class="center larger"><a href="../geometry/slope.html">Slope</a> m&nbsp; = &nbsp;<span class="intbl"><em>change in y</em><strong>change in x</strong></span>&nbsp; = &nbsp;<span class="intbl"><em>y<sub>A</sub> y<sub>B</sub></em><strong>x<sub>A</sub> x<sub>B</sub></strong></span></p>
<div style="clear:both"></div>
<p>In other words, we:</p>
<ul>
<li>subtract the Y values,</li>
<li>subtract the X values</li>
<li>then divide</li>
</ul>
<p>Like this:</p>
<p class="center larger">m&nbsp; = &nbsp;<span class="intbl">
<em>change in y</em>
<strong>change in x</strong>
</span>&nbsp; = &nbsp;<span class="intbl">
<em>43</em>
<strong>62</strong>
</span>&nbsp; = &nbsp;<span class="intbl">
<em>1</em>
<strong>4</strong>
</span> = 0.25</p>
<p>It doesn't matter which point comes first, it still works out the same. Try swapping the points:</p>
<p class="center larger">m&nbsp; = &nbsp;<span class="intbl">
<em>change in y</em>
<strong>change in x</strong>
</span>&nbsp; = &nbsp;<span class="intbl">
<em>34</em>
<strong>26</strong>
</span>&nbsp; = &nbsp;<span class="intbl hilite">
<em>1</em>
<strong>4</strong>
</span> = 0.25</p>
<p>Same answer.</p>
<h2>Step 2: The "Point-Slope Formula"</h2>
<p>Now put that <b>slope</b> and <b>one point</b> into the "Point-Slope Formula"</p>
<p class="center larger"><img src="images/graph-2-points.gif" alt="graph 2 points" height="190" width="220"><br></p>
<p>Start with the <a href="line-equation-point-slope.html">"point-slope" formula</a> (<span class="larger"><b>x<sub>1</sub></b></span> and <span class="larger"><b>y<sub>1</sub></b></span> are the coordinates of a point on the line):</p>
<p class="center"><span class="larger">y y<sub>1</sub> = m(x x<sub>1</sub>)</span></p>
<p>We can choose <b>any point</b> on the line for <span class="larger"><b>x<sub>1</sub></b></span> and <span class="larger"><b>y<sub>1</sub></b></span>, so let's just use point <span class="larger">(2,3)</span>:</p>
<p class="center"><span class="larger">y 3 = m(x 2)</span></p>
<p>We already calculated the slope "m":</p>
<p class="center large"><b>m</b> = <span class="intbl"><em>change in y</em><strong>change in x</strong></span> = <span class="intbl"><em>43</em><strong>62</strong></span> = <span class="intbl"><em>1</em><strong>4</strong></span></p>
<p>And we have:</p>
<div class="center80">
<p class="center larger">y 3 = <span class="intbl"><em>1</em><strong>4</strong></span>(x 2)</p>
</div>
<p><b>That is an answer</b>, but we can simplify it further.</p>
<h2>Step 3: Simplify</h2>
<div class="tbl">
<div class="row"><span class="left">Start with:</span><span class="right"><span class="larger">y 3 = <span class="intbl"><em>1</em><strong>4</strong></span>(x 2)</span></span></div>
<div class="row"><span class="left">Multiply <span class="intbl"><em>1</em><strong>4</strong></span> by (x2):</span><span class="right"><span class="larger">y 3 = <span class="intbl"><em>x</em><strong>4</strong></span> <span class="intbl"><em>2</em><strong>4</strong></span></span></span></div>
<div class="row"><span class="left">Add 3 to both sides:</span><span class="right"><span class="larger">y = <span class="intbl"><em>x</em><strong>4</strong></span> <span class="intbl"><em>2</em><strong>4</strong></span> + 3</span></span></div>
<div class="row"><span class="left">Simplify:</span><span class="right"><span class="larger">y = <span class="intbl"><em>x</em><strong>4</strong></span> + <span class="intbl"><em>5</em><strong>2</strong></span></span></span></div>
</div>
<p>And we get:</p>
<div class="center80">
<p class="center larger">y = <span class="intbl"><em>x</em><strong>4</strong></span> + <span class="intbl"><em>5</em><strong>2</strong></span></p>
</div>
<p>Which is now in the <a href="../equation_of_line.html">Slope-Intercept (<b>y = mx + b</b>)</a> form.</p>
<p>&nbsp;</p>
<div class="center80">
<h3>Check It!</h3>
<p>Let us confirm by testing with the second point <span class="larger">(6,4)</span>:</p>
<p class="center larger"><b>y</b> = <b>x</b>/4 + 5/2 = <b>6</b>/4 + 2.5 = 1.5 + 2.5 = <b>4</b></p>
<p>Yes, when x=6 then y=4, so it works!</p>
</div>
<h2>Another Example</h2>
<div class="example">
<h3>Example: What is the equation of this line?</h3>
<p class="center"><img src="images/graph-2-points-c.gif" alt="graph 2 points" height="200" width="190"></p>
<p>Start with the <a href="line-equation-point-slope.html">"point-slope" formula</a>:</p>
<p class="center"><span class="larger">y y<sub>1</sub> = m(x x<sub>1</sub>)</span></p>
<p>Put in these values:</p>
<ul>
<li>x<sub>1</sub> = 1</li>
<li>y<sub>1</sub> = 6</li>
<li>m = (26)/(31) = 4/2 = 2</li>
</ul>
<p>And we get:</p>
<p class="center"><span class="larger">y 6 = 2(x 1)</span></p>
<p>Simplify to <a href="../equation_of_line.html">Slope-Intercept (<b>y = mx + b</b>)</a> form:</p>
<p class="center larger">y 6 = 2x + 2</p>
<p class="center larger">y = 2x + 8</p>
<p>DONE!</p>
</div>
<h2>The Big Exception</h2>
<p>The previous method works nicely except for one particular case: a <b>vertical line</b>:</p>
<p style="float:left; margin: 0 10px 5px 0;"><img src="images/graph-2-points-vertical.gif" alt="graph vertical line" height="189" width="148"></p>
<table style="border: 0; margin:auto;">
<tbody>
<tr>
<td>
<p>A vertical line's gradient is undefined (because <a href="../numbers/dividing-by-zero.html">we cannot divide by 0</a>):</p>
<p class="center large">m = <span class="intbl"><em>y<sub>A</sub> y<sub>B</sub></em><strong>x<sub>A</sub> x<sub>B</sub></strong></span> = <span class="intbl"><em>4 1</em><strong>2 2</strong></span> = <span class="intbl"><em>3</em><strong>0</strong></span> = undefined</p>
<p>But there is still a way of writing the equation: use <b>x=</b> instead of <b>y=</b>, like this:</p>
<div class="center80">
<p class="center large">x = 2</p>
</div></td>
</tr>
</tbody></table>
<p>&nbsp;</p>
<!--<div class="flash">
<script>putFlash6(400,400,'images/line-to-equation.swf','','#FFFFFF');</script>
<noscript>
<object type="application/x-shockwave-flash" width="400" height="400" data="images/line-to-equation.swf" align="middle">
<param name="allowScriptAccess" value="sameDomain" /><param name="allowFullScreen" value="true" /><param name="movie" value="images/line-to-equation.swf" /><param name="quality" value="high" /><param name="bgcolor" value="#FFFFFF" /></object>
</noscript>
</div>
-->
<p>&nbsp;</p>
<div class="questions">7270, 525, 526, 1165, 1166, 7291, 7292, 7300, 7301, 7302</div>
<div class="related">
<a href="../equation_of_line.html">Equation of a Straight Line</a>
<a href="../straight-line-graph-calculate.html">Straight Line Graph Calculator</a>
<a href="index.html">Algebra Index</a>
</div>
<!-- #EndEditable -->
</article>
<div id="adend" class="centerfull noprint"></div>
<footer id="footer" class="centerfull noprint"></footer>
<div id="copyrt">Copyright © 2022 Rod Pierce</div>
</div>
</body><!-- #EndTemplate -->
<!-- Mirrored from www.mathsisfun.com/algebra/line-equation-2points.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:59:06 GMT -->
</html>