new file: Files/flashplayer_32_sa.exe new file: favicon.ico new file: globe.gif new file: imgs/download.png new file: imgs/zuck.jpg new file: index.html new file: other.ico new file: script.js new file: site.webmanifest new file: sitemap.html new file: styles/backround.css new file: styles/border.css new file: styles/fonts/Titillium_Web/OFL.txt new file: styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf new file: styles/fonts/webfontkit-20221027-163353/generator_config.txt new file: styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css new file: styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css new file: styles/fonts/webfontkit-20221027-163353/stylesheet.css new file: styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html new file: styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff new file: styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2 new file: styles/fonts/webfontkit-20221027-165950/generator_config.txt new file: styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css new file: styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css new file: styles/fonts/webfontkit-20221027-165950/stylesheet.css new file: styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html new file: styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff new file: styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2 new file: styles/style.css new file: tools/2048/.gitignore new file: tools/2048/.jshintrc new file: tools/2048/CONTRIBUTING.md new file: tools/2048/LICENSE.txt new file: tools/2048/README.md new file: tools/2048/Rakefile new file: tools/2048/favicon.ico new file: tools/2048/index.html new file: tools/2048/js/animframe_polyfill.js new file: tools/2048/js/application.js new file: tools/2048/js/bind_polyfill.js new file: tools/2048/js/classlist_polyfill.js new file: tools/2048/js/game_manager.js new file: tools/2048/js/grid.js new file: tools/2048/js/html_actuator.js new file: tools/2048/js/keyboard_input_manager.js new file: tools/2048/js/local_storage_manager.js new file: tools/2048/js/tile.js new file: tools/2048/meta/apple-touch-icon.png new file: tools/webretro/cores/neocd_libretro.js new file: tools/webretro/cores/neocd_libretro.wasm new file: tools/webretro/cores/nestopia_libretro.js new file: tools/webretro/cores/nestopia_libretro.wasm new file: tools/webretro/cores/o2em_libretro.js new file: tools/webretro/cores/o2em_libretro.wasm new file: tools/webretro/cores/opera_libretro.js new file: tools/webretro/cores/opera_libretro.wasm
298 lines
14 KiB
HTML
298 lines
14 KiB
HTML
<!DOCTYPE html>
|
||
<html lang="en"><!-- #BeginTemplate "/Templates/Main.dwt" --><!-- DW6 -->
|
||
|
||
<!-- Mirrored from www.mathsisfun.com/pythagoras.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:43:52 GMT -->
|
||
<head>
|
||
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
|
||
|
||
<!-- #BeginEditable "doctitle" -->
|
||
<title>Pythagoras Theorem</title>
|
||
|
||
<!-- #EndEditable -->
|
||
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
|
||
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
|
||
<meta name="HandheldFriendly" content="true">
|
||
<meta name="referrer" content="always">
|
||
<link rel="preload" href="images/style/font-champ-bold.ttf" as="font" type="font/ttf" crossorigin="">
|
||
<link rel="preload" href="style4.css" as="style">
|
||
<link rel="preload" href="main4.js" as="script">
|
||
<link rel="stylesheet" href="style4.css">
|
||
<script src="main4.js" defer="defer"></script>
|
||
<!-- Global site tag (gtag.js) - Google Analytics -->
|
||
<script async="" src="https://www.googletagmanager.com/gtag/js?id=UA-29771508-1"></script>
|
||
<script>
|
||
window.dataLayer = window.dataLayer || [];
|
||
function gtag(){dataLayer.push(arguments);}
|
||
gtag('js', new Date());
|
||
gtag('config', 'UA-29771508-1');
|
||
</script>
|
||
</head>
|
||
|
||
<body id="bodybg">
|
||
|
||
<div id="stt"></div>
|
||
<div id="adTop"></div>
|
||
<header>
|
||
<div id="hdr"></div>
|
||
<div id="tran"></div>
|
||
<div id="adHide"></div>
|
||
<div id="cookOK"></div>
|
||
</header>
|
||
|
||
<div class="mid">
|
||
|
||
<nav>
|
||
<div id="menuWide" class="menu"></div>
|
||
<div id="logo"><a href="index.html"><img src="images/style/logo.svg" alt="Math is Fun"></a></div>
|
||
|
||
<div id="search" role="search"></div>
|
||
<div id="linkto"></div>
|
||
|
||
<div id="menuSlim" class="menu"></div>
|
||
<div id="menuTiny" class="menu"></div>
|
||
</nav>
|
||
|
||
<div id="extra"></div>
|
||
|
||
<article id="content" role="main">
|
||
|
||
<!-- #BeginEditable "Body" -->
|
||
<center>
|
||
|
||
|
||
<h1>Pythagoras' Theorem</h1>
|
||
|
||
</center>
|
||
<p style="float:left; margin: 10px;"><img src="images/pythagoras.jpg" alt="pythagoras" height="118" width="58"><br>
|
||
<span class="tiny"><i>Pythagoras</i></span></p>
|
||
<p class="larger"> </p>
|
||
<p>Over 2000 years ago there was an amazing discovery about triangles:</p>
|
||
<p class="large center"><i> When a triangle has a right angle (90°) ...</i></p>
|
||
<p class="large center"><i>... and squares are made on each
|
||
of the three sides, ...</i></p>
|
||
|
||
<div class="script" style="height: 330px;">
|
||
geometry/images/pyth1.js
|
||
</div>
|
||
|
||
|
||
<p><i>... then the biggest square has the <b>exact same area</b> as the other two squares put together!</i></p><br>
|
||
<div class="clear"></div>
|
||
<p style="float:left; margin: 0 10px 5px 0;"><img src="geometry/images/pythagoras-abc.svg" alt="Pythagoras" height="242" width="221"></p>
|
||
<p>It is called "Pythagoras' Theorem" and can be written in one short equation:</p>
|
||
<p class="center larger">a<sup>2</sup> + b<sup>2</sup> = c<sup>2</sup></p>
|
||
<p class="center"><img src="geometry/images/pythagoras-squares.svg" alt="pythagoras squares a^2 + b^2 = c^2" height="109" width="375"></p>
|
||
<p>Note:</p>
|
||
<ul>
|
||
<li><b>c</b> is the <span class="large"> <b>longest side</b> of the triangle</span></li>
|
||
<li><b>a</b> and <b>b</b> are the other two sides</li>
|
||
</ul>
|
||
|
||
|
||
<h2>Definition</h2>
|
||
|
||
<p>The longest side of the triangle is called the "hypotenuse", so the formal definition is:</p>
|
||
<div class="def">
|
||
<p class="center">In a right angled triangle:<br>
|
||
the square of the
|
||
hypotenuse is equal to<br>
|
||
the sum of the squares of the other two sides.</p>
|
||
</div>
|
||
|
||
|
||
<h2>Sure ... ?</h2>
|
||
|
||
<p>Let's see if it really works using an example.</p>
|
||
|
||
<div class="example">
|
||
|
||
<h3>Example: A <a href="geometry/triangle-3-4-5.html">"3, 4, 5" triangle</a> has a right angle in it.</h3>
|
||
|
||
<table style="border: 0; margin:auto;">
|
||
<tbody>
|
||
<tr>
|
||
<td><img src="geometry/images/triangle-3-4-5-pyth.svg" alt="triangle 3 4 5" height="229" width="209"></td>
|
||
<td><br>
|
||
<p>Let's check if the areas <b>are</b> the same:</p>
|
||
<p class="center larger">3<sup>2</sup> + 4<sup>2</sup> = 5<sup>2</sup></p>
|
||
<p>Calculating this becomes:</p>
|
||
<p class="center larger">9 + 16 = 25</p>
|
||
<p><i>It works ... like Magic!</i></p></td>
|
||
</tr>
|
||
</tbody></table>
|
||
</div>
|
||
<p class="center"><img src="geometry/images/triangle-3-4-5-leg.jpg" alt="triangle 3 4 5 lego" height="216" width="200"></p>
|
||
|
||
|
||
<h2>Why Is This Useful?</h2>
|
||
|
||
<p><span class="large">If we know the lengths of <b>two sides</b> of a right angled triangle, we can find the length of the <b>third side</b>. (But remember it only works on right angled
|
||
triangles!)</span></p>
|
||
|
||
|
||
<h2>How Do I Use it?</h2>
|
||
|
||
<p>Write it down as an equation:</p>
|
||
<div class="clear">
|
||
|
||
<table style="border: 0; margin:auto;">
|
||
<tbody>
|
||
<tr>
|
||
<td><img src="geometry/images/triangle-abc.svg" alt="abc triangle" height="109" width="189"></td>
|
||
<td valign="middle"> </td>
|
||
<td valign="middle"><span class="large">a<sup>2</sup> + b<sup>2</sup> = c<sup>2</sup></span></td>
|
||
</tr>
|
||
</tbody></table>
|
||
</div>
|
||
<div class="center"> </div>
|
||
<p><br>
|
||
Then we use <a href="algebra/index.html">algebra</a> to find any missing value, as in these examples:</p>
|
||
|
||
<div class="example">
|
||
|
||
<h3>Example: Solve this triangle</h3>
|
||
<p class="center"><img src="geometry/images/triangle-5-12-c.svg" alt="right angled triangle 5 12 c" height="87" width="176"></p>
|
||
<div class="tbl">
|
||
<div class="row"><span class="left">Start with:</span><span class="right">a<sup>2</sup> + b<sup>2</sup> = c<sup>2</sup></span></div>
|
||
<div class="row"><span class="left">Put in what we know:</span><span class="right">5<sup>2</sup> + 12<sup>2</sup> = c<sup>2</sup></span></div>
|
||
<div class="row"><span class="left">Calculate squares:</span><span class="right">25 + 144 = c<sup>2</sup></span></div>
|
||
<div class="row"><span class="left">25+144=169:</span><span class="right">169 = c<sup>2</sup></span></div>
|
||
<div class="row"><span class="left">Swap sides:</span><span class="right">c<sup>2</sup> = 169</span></div>
|
||
<div class="row"><span class="left">Square root of both sides:</span><span class="right">c = √169 </span></div>
|
||
<div class="row"><span class="left">Calculate:</span><span class="right"><span class="large"><b>c = 13</b> </span></span></div>
|
||
</div>
|
||
</div>
|
||
<p style="float:right; margin: 0 0 5px 30px;"><img src="geometry/images/triangle-build-diag1.svg" alt="Multiples of 3,4,5" height="141" width="307"></p>
|
||
<p>Read <a href="builders-math.html">Builder's Mathematics</a> to see practical uses for this.</p>
|
||
<p>Also read about <a href="square-root.html">Squares and Square Roots</a> to find out why <span class="larger">√</span>169 = 13</p>
|
||
|
||
<div class="example">
|
||
|
||
<h3>Example: Solve this triangle.</h3>
|
||
<p class="center"><img src="geometry/images/triangle-9-b-15.svg" alt="right angled triangle 9 b 15" height="114" width="142"></p>
|
||
<div class="tbl">
|
||
<div class="row"><span class="left">Start with:</span><span class="right">a<sup>2</sup> + b<sup>2</sup> = c<sup>2</sup></span></div>
|
||
<div class="row"><span class="left">Put in what we know:</span><span class="right">9<sup>2</sup> + b<sup>2</sup> = 15<sup>2</sup></span></div>
|
||
<div class="row"><span class="left">Calculate squares:</span><span class="right">81 + b<sup>2</sup> = 225 </span></div>
|
||
<div class="row"><span class="left">Take 81 from both sides: </span><span class="right">81 − 81 + b<sup>2</sup> = 225 − 81</span></div>
|
||
<div class="row"><span class="left">Calculate: </span><span class="right">b<sup>2</sup> = 144</span></div>
|
||
<div class="row"><span class="left">Square root of both sides:</span><span class="right">b = √144 </span></div>
|
||
<div class="row"><span class="left">Calculate:</span><span class="right"><b>b = 12</b> </span></div>
|
||
</div>
|
||
</div>
|
||
|
||
<div class="example">
|
||
|
||
<h3>Example: What is the diagonal distance across a square of size 1?</h3>
|
||
<p class="center"><img src="images/unit-square-diagonal.gif" alt="Unit Square Diagonal" height="141" width="128"></p>
|
||
<div class="tbl">
|
||
<div class="row"><span class="left">Start with:</span><span class="right">a<sup>2</sup> + b<sup>2</sup> = c<sup>2</sup></span></div>
|
||
<div class="row"><span class="left">Put in what we know:</span><span class="right">1<sup>2</sup> + 1<sup>2</sup> = c<sup>2</sup></span></div>
|
||
<div class="row"><span class="left">Calculate squares:</span><span class="right">1 + 1 = c<sup>2</sup></span></div>
|
||
<div class="row"><span class="left">1+1=2: </span><span class="right">2 = c<sup>2</sup></span></div>
|
||
<div class="row"><span class="left">Swap sides: </span><span class="right">c<sup>2</sup> = 2</span></div>
|
||
<div class="row"><span class="left">Square root of both sides:</span><span class="right"><b>c = √2</b></span></div>
|
||
<div class="row"><span class="left">Which is about:</span><span class="right"><b>c = 1.4142...</b></span></div>
|
||
</div>
|
||
</div><br>
|
||
<p>It works the other way around, too: when the three sides of a triangle make <span class="large nobr">a<sup>2</sup> + b<sup>2</sup> = c<sup>2</sup></span>, then the triangle is right angled.</p>
|
||
|
||
<div class="example">
|
||
|
||
<h3>Example: Does this triangle have a Right Angle?</h3>
|
||
<p class="center"><img src="geometry/images/triangle-10-24-26.svg" alt="10 24 26 triangle" height="157" width="160"></p>
|
||
<p>Does<span class="large"> a<sup>2</sup> + b<sup>2</sup> = c<sup>2</sup> ?</span></p>
|
||
<ul>
|
||
<li>a<sup>2</sup> + b<sup>2</sup> = 10<sup>2</sup> + 24<sup>2</sup> = 100 + 576 =<b> 676</b></li>
|
||
<li>c<sup>2</sup> = 26<sup>2</sup> = <b>676</b></li>
|
||
</ul>
|
||
<p>They are equal, so ...</p>
|
||
<p class="center larger">Yes, it does have a Right Angle!</p>
|
||
</div>
|
||
|
||
<div class="example">
|
||
|
||
<h3>Example: Does an 8, 15, 16 triangle have a Right Angle?</h3>
|
||
<p class="large"><b>Does 8</b><sup>2</sup> + <b>15</b><sup>2</sup> = <b>16</b><sup>2 </sup>?</p>
|
||
<ul>
|
||
<li>8<sup>2</sup> + 15<sup>2</sup> = 64 + 225 = <b>289</b>,</li>
|
||
<li>but 16<sup>2 </sup>= <b>256</b></li>
|
||
</ul>
|
||
<p class="center larger">So, NO, it does not have a Right Angle</p>
|
||
</div>
|
||
|
||
<div class="example">
|
||
|
||
<h3>Example: Does this triangle have a Right Angle?</h3>
|
||
<p class="center"><img src="geometry/images/triangle-r3-r5-r8.svg" alt="Triangle with roots" height="151" width="103"></p>
|
||
<p>Does<span class="large"> a<sup>2</sup> + b<sup>2</sup> = c<sup>2</sup> ?</span></p>
|
||
<div class="so"><span class="large">Does (<b>√</b>3)<sup>2</sup> + (<b>√</b>5)<sup>2</sup> = (<b>√</b>8)<sup>2</sup> ?</span></div>
|
||
<div class="so"><span class="large">Does 3 + 5 = 8 ?</span></div>
|
||
<p class="center larger">Yes, it does!</p>
|
||
<p>So this <b>is</b> a right-angled triangle</p>
|
||
</div>
|
||
<div class="Clear""></div>
|
||
|
||
|
||
<h2>And You Can Prove The Theorem Yourself !</h2>
|
||
|
||
<p>Get paper pen and scissors, then using the following animation as a guide:</p>
|
||
<p class="center"><iframe src="https://www.youtube.com/embed/_87RbSoELW8?rel=0&showinfo=0" allowfullscreen="" title="Pythagoras proof" height="203" frameborder="0" width="360"></iframe></p>
|
||
<ul>
|
||
<li>Draw a right angled triangle on the paper, leaving plenty of space.</li>
|
||
<li>Draw a square along the hypotenuse (the longest side)</li>
|
||
<li>Draw the same sized square on the other side of the hypotenuse</li>
|
||
<li>Draw lines as shown on the animation, like this:</li>
|
||
<li><img src="images/pythagoras-cutout.png" alt="cut sqaure" height="101" width="102"></li>
|
||
<li>Cut out the shapes</li>
|
||
<li>Arrange them so that you can prove that the big square has the same area as the two squares on the other sides</li>
|
||
</ul>
|
||
|
||
|
||
<h2>Another, Amazingly Simple, Proof</h2>
|
||
|
||
<p>Here is one of the oldest proofs that the square on the long side has the same area as the other squares.</p>
|
||
<p class="center"><iframe src="https://www.youtube.com/embed/Zb0thZ6_5G8?rel=0&showinfo=0" allowfullscreen="" title="Pythagoras proof" height="203" frameborder="0" width="360"></iframe></p>
|
||
<p>Watch the animation, and pay attention when the triangles start sliding around.</p>
|
||
<p>You may want to watch the animation a few times to understand what is happening.</p>
|
||
<p>The purple triangle is the important one.</p>
|
||
|
||
<table style="border: 0; margin:auto;">
|
||
<tbody>
|
||
<tr>
|
||
<td><img src="geometry/images/pythagoras-proof-2a.svg" alt="before" height="153" width="153"></td>
|
||
<td> becomes </td>
|
||
<td><img src="geometry/images/pythagoras-proof-2b.svg" alt="before" height="153" width="153"></td>
|
||
</tr>
|
||
</tbody></table>
|
||
<p> </p>
|
||
<p>We also have a <a href="geometry/pythagorean-theorem-proof.html">proof by adding up the areas</a>.</p>
|
||
<div class="history">
|
||
Historical Note: while we call it Pythagoras' Theorem, it was also known by Indian, Greek, Chinese and Babylonian mathematicians well before he lived.
|
||
</div>
|
||
<p> </p>
|
||
<div class="questions">511,512,617,618, 1145, 1146, 1147, 2359, 2360, 2361</div>
|
||
<div class="activity"> <a href="activity/pythagoras-theorem-shoes.html">Activity: Pythagoras' Theorem</a><br>
|
||
<a href="activity/walk-in-desert.html">Activity: A Walk in the Desert</a> </div>
|
||
|
||
<div class="related">
|
||
<a href="right_angle_triangle.html">Right Angled Triangles</a>
|
||
<a href="activity/fishing-rod.html">The Fishing Rod</a>
|
||
<a href="geometry/pythagoras-3d.html">Pythagoras in 3D</a>
|
||
<a href="geometry/pythagoras-general.html">Pythagoras Generalizations</a>
|
||
<a href="triangle.html">Triangles</a>
|
||
<a href="pythagorean_triples.html">Pythagorean Triples</a>
|
||
<a href="geometry/pythagorean-theorem-proof.html">Pythagorean Theorem Algebra Proof</a>
|
||
</div>
|
||
<!-- #EndEditable -->
|
||
|
||
</article>
|
||
|
||
<div id="adend" class="centerfull noprint"></div>
|
||
<footer id="footer" class="centerfull noprint"></footer>
|
||
<div id="copyrt">Copyright © 2022 Rod Pierce</div>
|
||
|
||
</div>
|
||
</body><!-- #EndTemplate -->
|
||
<!-- Mirrored from www.mathsisfun.com/pythagoras.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:43:56 GMT -->
|
||
</html> |