Lucas Kent e39465ad2f Changes to be committed:
new file:   Files/flashplayer_32_sa.exe
	new file:   favicon.ico
	new file:   globe.gif
	new file:   imgs/download.png
	new file:   imgs/zuck.jpg
	new file:   index.html
	new file:   other.ico
	new file:   script.js
	new file:   site.webmanifest
	new file:   sitemap.html
	new file:   styles/backround.css
	new file:   styles/border.css
	new file:   styles/fonts/Titillium_Web/OFL.txt
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf
	new file:   styles/fonts/webfontkit-20221027-163353/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2
	new file:   styles/fonts/webfontkit-20221027-165950/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2
	new file:   styles/style.css
	new file:   tools/2048/.gitignore
	new file:   tools/2048/.jshintrc
	new file:   tools/2048/CONTRIBUTING.md
	new file:   tools/2048/LICENSE.txt
	new file:   tools/2048/README.md
	new file:   tools/2048/Rakefile
	new file:   tools/2048/favicon.ico
	new file:   tools/2048/index.html
	new file:   tools/2048/js/animframe_polyfill.js
	new file:   tools/2048/js/application.js
	new file:   tools/2048/js/bind_polyfill.js
	new file:   tools/2048/js/classlist_polyfill.js
	new file:   tools/2048/js/game_manager.js
	new file:   tools/2048/js/grid.js
	new file:   tools/2048/js/html_actuator.js
	new file:   tools/2048/js/keyboard_input_manager.js
	new file:   tools/2048/js/local_storage_manager.js
	new file:   tools/2048/js/tile.js
    new file:   tools/2048/meta/apple-touch-icon.png
	new file:   tools/webretro/cores/neocd_libretro.js
	new file:   tools/webretro/cores/neocd_libretro.wasm
	new file:   tools/webretro/cores/nestopia_libretro.js
	new file:   tools/webretro/cores/nestopia_libretro.wasm
	new file:   tools/webretro/cores/o2em_libretro.js
	new file:   tools/webretro/cores/o2em_libretro.wasm
	new file:   tools/webretro/cores/opera_libretro.js
	new file:   tools/webretro/cores/opera_libretro.wasm
2022-11-02 08:40:01 -04:00

321 lines
14 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html lang="en"><!-- #BeginTemplate "/Templates/Advanced.dwt" --><!-- DW6 -->
<!-- Mirrored from www.mathsisfun.com/physics/gravity.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:39:31 GMT -->
<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
<!-- #BeginEditable "doctitle" -->
<title>Gravity</title>
<script>reSpell=[["meters","metres"],["center","centre"],["centers","centres"]];</script>
<meta name="description" content="Math explained in easy language, plus puzzles, games, quizzes, videos and worksheets. For K-12 kids, teachers and parents.">
<!-- #EndEditable -->
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
<meta name="HandheldFriendly" content="true">
<meta name="referrer" content="always">
<link rel="preload" href="../images/style/font-champ-bold.ttf" as="font" type="font/ttf" crossorigin="">
<link rel="preload" href="../style4.css" as="style">
<link rel="preload" href="../main4.js" as="script">
<link rel="stylesheet" href="../style4.css">
<script src="../main4.js" defer="defer"></script>
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async="" src="https://www.googletagmanager.com/gtag/js?id=UA-29771508-1"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'UA-29771508-1');
</script>
</head>
<body id="bodybg" class="adv">
<div id="stt"></div>
<div id="adTop"></div>
<header>
<div id="hdr"></div>
<div id="tran"></div>
<div id="adHide"></div>
<div id="cookOK"></div>
</header>
<div class="mid">
<nav>
<div id="menuWide" class="menu"></div>
<div id="logo"><a href="../index.html"><img src="../images/style/logo-adv.svg" alt="Math is Fun Advanced"></a></div>
<div id="search" role="search"></div>
<div id="linkto"></div>
<div id="menuSlim" class="menu"></div>
<div id="menuTiny" class="menu"></div>
</nav>
<div id="extra"></div>
<article id="content" role="main">
<!-- #BeginEditable "Body" -->
<h1 class="center">Gravity</h1>
<h2>Falling Apple</h2>
<p>Gravity is all around us. It can, for example, make an apple fall to the ground:</p>
<p class="center"><img src="images/gravity-apple1.svg" alt="gravity apple" height="197" width="128"></p>
<p>Gravity constantly acts on the apple so it goes faster and faster ... in other words it <a href="../measure/metric-acceleration.html">accelerates</a>.</p>
<p>Ignoring air resistance, its <a href="../measure/metric-speed.html">velocity</a> increases by <b>9.8 meters per second</b> every second. So we get this:</p>
<table style="text-align:right; margin:auto;" border="0">
<tbody>
<tr>
<td style="width:150px;">After 1 second:</td>
<td style="width:90px;">9.8 m/s</td></tr>
<tr>
<td>After 2 seconds:</td>
<td>19.6 m/s</td></tr>
<tr>
<td>After 3 seconds:</td>
<td>29.4 m/s</td></tr>
<tr>
<td>etc...</td>
<td><br></td></tr></tbody></table>
<p></p>
<p><b>9.8 meters per second</b> per second (yes, that is two lots of "per second") can be written
9.8 m/s/s, but is usually written:</p>
<p class="center larger"> <b>9.8 m/s<sup>2</sup></b></p>
<p><b>9.8 m/s<sup>2</sup></b> is the <b>acceleration due to gravity</b> near the Earth's surface. Nearly everything in our&nbsp;lives happens near the Earth's surface, so that value gets used a lot, and is written as a <b>little</b> <b><i>g</i></b>:</p>
<p class="center large"><b><i>g</i></b> = 9.8 m/s<sup>2</sup></p>
<div class="fun">
<p>The average value is <b>9.80665 m/s<sup>2</sup></b>, but values are different around the world, such as Calcutta at 9.78548, London at 9.81599 and Tokyo at 9.79805.</p>
<p>So most people just use <b>9.8 m/s<sup>2</sup></b></p>
</div>
<p>&nbsp;</p>
<p style="float:left; margin: 0 10px 5px 0;"><img src="images/gravity-apple2.svg" alt="gravity apple" height="197" width="128"></p>
<p>&nbsp;</p>
<p>To hold an apple against gravity needs <a href="force.html">force</a>.</p>
<p>Force is mass times acceleration (<b>F</b> = m<b>a</b>), and in this case the acceleration is <b><i>g</i></b>:</p>
<p class="center larger"><b>F</b> =&nbsp;m<b><i>g</i></b></p>
<div style="clear:both"></div>
<div class="example">
<h3>Example: how much force to hold an apple with a mass of 0.1 kg?</h3>
<p class="center"><b>F</b> = m<b><i>g</i></b></p>
<p class="center"><b>F</b> = 0.1 kg × <b>9.8 m/s<sup>2</sup></b></p>
<p class="center"><b>F</b> = <b>0.98 kg m/s<sup>2</sup></b></p>
<p>Force is measured in Newtons (<b>N</b>) which are the same as <b> kg m/s<sup>2</sup></b></p>
<p class="center"><b>F</b> = <b>0.98 N</b></p>
<p>So it needs a force of <b>about 1 Newton</b> to hold up an apple.</p>
<p>We also say the apple has a <a href="../measure/weight-mass.html">weight</a> of 0.98 N.</p>
</div>
<div class="def">
<p class="center larger">To convert a mass in kg to a force in Newtons multiply by<b> 9.8 m/s<sup>2</sup></b></p>
</div><p>Another example:</p>
<div class="example">
<h3>Example: a 100kg steel beam sits evenly on two&nbsp;supports. How much force is on each support?</h3>
<p class="center"><img src="images/beam-100kg.gif" alt="beam 100kg" height="58" width="200"></p>
<p>The beam exerts a downwards force due to gravity:</p>
<p class="center"><b>F</b> = m<b><i>g</i></b></p>
<p class="center"><b>F</b> = 100 kg × <b>9.8 m/s<sup>2</sup></b>&nbsp;= <b>980 N</b></p>
<p>As it sits evenly on the support, each support bears half the weight (980/2=490):</p>
<p class="center"><img src="images/beam-100kg-forces.gif" alt="beam 100kg forces: 980N balances 2 of 490 N" height="154" width="200"></p>
</div>
<h2>But What Is Gravity?</h2>
<p>Now you know how to deal with gravity here on Earth (just multiply mass by <span class="center"><b>9.8 m/s<sup>2</sup></b></span> to get force), but what is gravity really?</p>
<p>Well, mass and energy make space curved (or distorted), so it is natural for objects to follow a path towards each other.</p>
<p class="center"><img src="images/space-time-curve2.jpg" alt="space time curve" height="187" width="360"><br>
<i>Here an object naturally follows space-time towards
Earth</i></p>
<p>This results in objects being <b>attracted to each other</b>, which we call <b>Gravity</b>.</p>
<div class="words">
<p><b>Gravity</b>: the attraction of objects with mass or energy towards each other.</p>
</div>
<p>This attraction shows as a <a href="force.html">force</a> that is:</p>
<ul>
<li>less for objects that are further away</li>
<li>more for objects of greater mass (like the Sun)</li>
</ul>
<p>Imagine just two balls:</p>
<p class="center"><img src="images/gravity-m1-m2-only.svg" alt="gravity mass 1 and 2" height="" width=""></p>
<p>Each ball is&nbsp;made of lots of bits of mass and energy that are all attracted to each other:</p>
<p class="center"><img src="images/gravity-parts.svg" alt="gravity all bits" height="" width=""><br>
<i>(Actually needs <b>lots</b> more particles!)</i></p>
<p>But we normally simplify it by imagining each ball's mass and energy is at its&nbsp;center, called the <a href="../geometry/centroid.html">Center of Gravity</a>.</p>
<p class="center"><img src="images/gravity-m1-m2.svg" alt="gravity mass 1 force = mass 2 force" height="" width=""></p>
<p>(But remember we just imagine all the mass is at the center, to make&nbsp;calculations easier.)</p>
<p>Newton worked out a formula for the force of attraction:</p>
<div class="def">
<p class="center large"><b>F</b> = G <span class="intbl"><em>m<sub>1</sub> m<sub>2</sub></em>
<strong>d<sup>2</sup>
</strong></span></p>
</div>
<ul>
<li><b>F</b> is the force (in Newtons), <b>which is equal but opposite in direction</b> for both objects</li>
<li>G is the gravitational constant, approximately 6.674×10<sup>-11</sup> N m<sup>2</sup>/kg<sup>2</sup></li>
<li>m<sub>1</sub> and m<sub>2</sub> are the two masses (in kg)</li>
<li>d is the distance <b>between the centers</b> of each mass (in meters)</li>
</ul>
<p>&nbsp;</p>
<div class="example">
<h3>Example: Two cars with masses of 800 kg and 1500 kg are 3 m apart</h3>
<p class="center"><img src="images/gravity-cars.jpg" alt="gravity between cars of 800 and 1500 mass" height="207" width="300"></p>
<p>The gravitational attraction <b>between the two cars</b> is:</p>
<p class="center large"><b>F</b> = G <span class="intbl">
<em>m<sub>1</sub> m<sub>2</sub></em>
<strong>d<sup>2</sup></strong>
</span></p>
<p class="center large"><b>F</b> = 6.674×10<sup>-11</sup> N m<sup>2</sup>/kg<sup>2</sup> × <span class="intbl">
<em>800 kg × 1500 kg</em>
<strong>(3 m)<sup>2</sup></strong>
</span></p>
<p class="center large"><b>F</b> ≈ 0.000009 N</p>
<p>They are <b>very slightly</b> (only 9 millionths of a Newton) attracted towards each other!&nbsp;</p>
</div>
<div class="example">
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/gravity-earth-apple.svg" alt="gravity betwen earth and apple" height="151" width="261"></p>
<h3>Example: An Apple and the Earth</h3>
<p>The apple has a mass of 0.1 kg</p>
<p>The Earth has a mass of 5.972×10<sup>24</sup> kg</p>
<p>From the <b>center of the apple</b> to the <b>center of the Earth</b> is 6371 km (6.371×10<sup>6</sup> m)</p>
<p class="center large"><b>F</b> = G <span class="intbl">
<em>m<sub>1</sub> m<sub>2</sub></em>
<strong>d<sup>2</sup> </strong>
</span></p>
<p class="center large"><b>F</b> = 6.674×10<sup>-11</sup> N m<sup>2</sup>/kg<sup>2</sup> × <span class="intbl">
<em>0.1 kg × 5.972×10<sup>24</sup> kg</em>
<strong>(6.371×10<sup>6</sup> m)<sup>2</sup> </strong>
</span></p>
<p class="center large"><b>F</b> = 0.98 N</p>
<p><i>(This is the same value as the earlier apple calculation, so that's good!)</i></p>
</div>
<h3>Goes Both Ways</h3>
<p>The Earth is also attracted to the apple!</p>
<p>But the Earth is so ridiculously more massive that it hardly affects it.</p>
<p>Let's&nbsp;calculate the acceleration for the apple <b>and</b> for the Earth:</p>
<div class="example">
<h3>Example (continued): Knowing the force is 0.98 N what is the acceleration for the apple <b>and</b> the Earth?</h3>
<p>For the <b>apple</b>:</p>
<table style="border: 0; margin:auto;">
<tbody>
<tr>
<td style="text-align:right;">&nbsp;</td>
<td>&nbsp;</td>
<td><b>F</b> =&nbsp;m<b>a</b></td>
</tr>
<tr>
<td style="text-align:right;">We know F&nbsp;is 0.98 N, and m is 0.1 kg</td>
<td>&nbsp;</td>
<td><b>0.98 N</b> = 0.1 kg <b>a</b></td>
</tr>
<tr>
<td style="text-align:right;">Divide both sides by 0.1 kg </td>
<td>&nbsp;</td>
<td><b>0.98 N</b> / 0.1 kg = <b>a</b></td>
</tr>
<tr>
<td style="text-align:right;">Swap sides</td>
<td>&nbsp;</td>
<td><b>a</b> = <b>0.98 N</b> / 0.1 kg</td>
</tr>
<tr>
<td style="text-align:right;">Answer: </td>
<td>&nbsp;</td>
<td><b>a</b> = <b>9.8 m/s<sup>2</sup></b></td>
</tr>
</tbody></table>
<p>That is the acceleration&nbsp;due to gravity "g" that we all experience every day.</p>
<p>And for the <b>Earth</b>:</p>
<table style="border: 0; margin:auto;">
<tbody>
<tr>
<td style="text-align:right;">&nbsp;</td>
<td>&nbsp;</td>
<td><b>F</b> =&nbsp;m<b>a</b></td>
</tr>
<tr>
<td style="text-align:right;">F&nbsp;is 0.98 N, and m is 5.972×10<sup>24</sup> kg</td>
<td>&nbsp;</td>
<td><b>0.98 N</b> = 5.972×10<sup>24</sup> kg <b>a</b></td>
</tr>
<tr>
<td style="text-align:right;">Divide both sides by 5.972×10<sup>24</sup> kg</td>
<td>&nbsp;</td>
<td><b>0.98 N</b> / 5.972×10<sup>24</sup> kg = <b>a</b></td>
</tr>
<tr>
<td style="text-align:right;">Swap sides</td>
<td>&nbsp;</td>
<td><b>a</b> = <b>0.98 N</b> / 5.972×10<sup>24</sup> kg</td>
</tr>
<tr>
<td style="text-align:right;">Answer: </td>
<td>&nbsp;</td>
<td><b>a</b> = <b>1.64×10<sup>-25 </sup>m/s<sup>2</sup></b></td>
</tr>
</tbody></table>
<p>That is an <i>extremely small acceleration</i>, no wonder we don't notice the Earth moving due to the apple.</p>
</div>
<div class="fun">
<p>But a much larger object such as the Moon (with a mass of <b>7.342×10<sup>22</sup> kg</b>) does have a noticeable effect on the Earth.</p>
<p>The Moon orbits the Earth at about <b>384,000 km</b> every 27.3 days</p>
<p>And the Earth also has an "orbit" (more like a wobble) with the Moon of about 5000 km (which is actually less than the Earth's radius), also every 27.3 days.</p>
</div>
<p>Your turn: try to work out the force of attraction between the Earth and the Moon.</p>
<h2>Have a Play</h2>
<p>Have a play with gravity at <a href="../numbers/gravity-freeplay.html">Gravity Freeplay</a>.</p>
<h2>Summary</h2>
<ul class="larger">
<li>mass and energy curve space, which naturally makes objects move towards each other</li>
<li>this attraction we call <b>gravity</b></li>
<li>this constant attraction makes objects accelerate towards each other</li>
<li>the acceleration has a matching force (<b>F</b>=m<b>a</b>)</li>
<li>near the surface of the Earth the acceleration due to gravity is <b>9.8 m/s<sup>2</sup></b></li>
<li>so a <b>1 kg mass</b> experiences a gravitational pull of <b>9.8 Newtons</b> of force</li>
</ul>
<p>&nbsp;</p>
<div class="questions">11939, 11941, 17544, 11942, 11947, 17546, 17550, 11945, 17548, 17551, 17552</div>
<div class="related">
<a href="gravity-ball.html">Ball Physics Animation</a>
<a href="../measure/metric-acceleration.html">Acceleration</a>
<a href="index.html">Physics Index</a>
</div>
<!-- #EndEditable -->
</article>
<div id="adend" class="centerfull noprint"></div>
<footer id="footer" class="centerfull noprint"></footer>
<div id="copyrt">Copyright © 2022 Rod Pierce</div>
</div>
</body><!-- #EndTemplate -->
<!-- Mirrored from www.mathsisfun.com/physics/gravity.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:39:34 GMT -->
</html>