Lucas Kent e39465ad2f Changes to be committed:
new file:   Files/flashplayer_32_sa.exe
	new file:   favicon.ico
	new file:   globe.gif
	new file:   imgs/download.png
	new file:   imgs/zuck.jpg
	new file:   index.html
	new file:   other.ico
	new file:   script.js
	new file:   site.webmanifest
	new file:   sitemap.html
	new file:   styles/backround.css
	new file:   styles/border.css
	new file:   styles/fonts/Titillium_Web/OFL.txt
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf
	new file:   styles/fonts/webfontkit-20221027-163353/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2
	new file:   styles/fonts/webfontkit-20221027-165950/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2
	new file:   styles/style.css
	new file:   tools/2048/.gitignore
	new file:   tools/2048/.jshintrc
	new file:   tools/2048/CONTRIBUTING.md
	new file:   tools/2048/LICENSE.txt
	new file:   tools/2048/README.md
	new file:   tools/2048/Rakefile
	new file:   tools/2048/favicon.ico
	new file:   tools/2048/index.html
	new file:   tools/2048/js/animframe_polyfill.js
	new file:   tools/2048/js/application.js
	new file:   tools/2048/js/bind_polyfill.js
	new file:   tools/2048/js/classlist_polyfill.js
	new file:   tools/2048/js/game_manager.js
	new file:   tools/2048/js/grid.js
	new file:   tools/2048/js/html_actuator.js
	new file:   tools/2048/js/keyboard_input_manager.js
	new file:   tools/2048/js/local_storage_manager.js
	new file:   tools/2048/js/tile.js
    new file:   tools/2048/meta/apple-touch-icon.png
	new file:   tools/webretro/cores/neocd_libretro.js
	new file:   tools/webretro/cores/neocd_libretro.wasm
	new file:   tools/webretro/cores/nestopia_libretro.js
	new file:   tools/webretro/cores/nestopia_libretro.wasm
	new file:   tools/webretro/cores/o2em_libretro.js
	new file:   tools/webretro/cores/o2em_libretro.wasm
	new file:   tools/webretro/cores/opera_libretro.js
	new file:   tools/webretro/cores/opera_libretro.wasm
2022-11-02 08:40:01 -04:00

506 lines
23 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html lang="en"><!-- #BeginTemplate "/Templates/Main.dwt" --><!-- DW6 -->
<!-- Mirrored from www.mathsisfun.com/numbers/golden-ratio.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:38:12 GMT -->
<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
<!-- #BeginEditable "doctitle" -->
<title>Golden Ratio</title>
<meta name="description" content="The golden ratio is a special number approximately equal to 1.618 that appears many times in mathematics, geometry, art, architecture and other areas.">
<style>
.golden {color:goldenrod; font-size:140%}
</style>
<link rel="stylesheet" type="text/css" href="../stylejs.css">
<!-- #EndEditable -->
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
<meta name="HandheldFriendly" content="true">
<meta name="referrer" content="always">
<link rel="preload" href="../images/style/font-champ-bold.ttf" as="font" type="font/ttf" crossorigin="">
<link rel="preload" href="../style4.css" as="style">
<link rel="preload" href="../main4.js" as="script">
<link rel="stylesheet" href="../style4.css">
<script src="../main4.js" defer="defer"></script>
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async="" src="https://www.googletagmanager.com/gtag/js?id=UA-29771508-1"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'UA-29771508-1');
</script>
</head>
<body id="bodybg">
<div id="stt"></div>
<div id="adTop"></div>
<header>
<div id="hdr"></div>
<div id="tran"></div>
<div id="adHide"></div>
<div id="cookOK"></div>
</header>
<div class="mid">
<nav>
<div id="menuWide" class="menu"></div>
<div id="logo"><a href="../index.html"><img src="../images/style/logo.svg" alt="Math is Fun"></a></div>
<div id="search" role="search"></div>
<div id="linkto"></div>
<div id="menuSlim" class="menu"></div>
<div id="menuTiny" class="menu"></div>
</nav>
<div id="extra"></div>
<article id="content" role="main">
<!-- #BeginEditable "Body" -->
<h1 class="center">Golden Ratio</h1>
<div style="float:left; margin: -40px 10px 5px 0;"><span class="golden" style="font:120px Arial;">φ</span>
</div>
<p>The golden ratio <i>(symbol is the Greek letter "phi" shown at left)</i><br>
is a special number approximately equal to 1.618</p>
<p>It appears many times in geometry, art, architecture and other areas.</p>
<h2>The Idea Behind It</h2>
<table style="border: 0; margin:auto;">
<tbody>
<tr>
<td>
<p>We find the golden ratio when we divide a line into two parts so that:</p>
<div class="bgb1" style="text-align:center; padding: 3px;">the whole length divided by the long part</div>
<div style="text-align:center;"><b><i>is also equal to</i></b> </div>
<div class="bgb1" style="text-align:center; padding: 3px;">the long part divided by the short part</div> </td>
</tr>
</tbody></table><br>
<p class="center"><img src="images/golden-ratio.svg" alt="golden ratio (a+b)/a = a/b = 1.618..." height="261" width="375"></p>
<p>Have a try yourself (use the slider):</p>
<div class="script">images/golden-ratio.js</div>
<h2>Beauty</h2>
<p style="float:left; margin: 0 20px 5px 0;"><img src="images/golden-rectangle.svg" alt="golden rectangle" height="155" width="188"></p>
<p>This rectangle has been made using the Golden Ratio, Looks like a typical frame for a painting, doesn't it?</p>
<p>Some artists and architects believe the Golden Ratio makes the most pleasing and beautiful shape.</p>
<div style="clear:both"></div>
<div class="center80">
<p class="center">Do <b>you</b> think it is the "most pleasing rectangle"?</p>
<p class="center">Maybe you do or don't, that is up to you!</p>
</div><p style="float:right; margin: 0 0 5px 10px;"><img src="images/parthenon-golden-ratio.jpg" alt="parthenon golden ratio" height="201" width="325"></p>
<p>&nbsp;</p>
<p>Many buildings and artworks have
the Golden Ratio in them, such as the Parthenon in Greece, but it is not really known if it was designed that way.</p>
<h2>The Actual Value</h2>
<p>The Golden Ratio is equal to:</p>
<p class="golden" align="center"><b>1.61803398874989484820...</b> (etc.)</p>
<p>The digits just keep on going, with no pattern. In fact the Golden Ratio is known to be an <a href="../irrational-numbers.html">Irrational Number</a>, and I will tell you more about it later.</p>
<h2>Formula</h2>
<p>We saw above that the Golden Ratio has this property:</p>
<p class="center larger"><span class="intbl"><em>a</em><strong>b</strong></span> = <span class="intbl"><em>a + b</em><strong>a</strong></span></p>
<p>We can split the right-hand fraction like this:</p>
<p class="center larger"><span class="intbl"><em>a</em><strong>b</strong></span> = <span class="intbl"><em>a</em><strong>a</strong></span> + <span class="intbl"><em>b</em><strong>a</strong></span></p>
<p><span class="intbl"><em>a</em><strong>b</strong></span> is the Golden Ratio <span class="golden">φ</span>, <span class="intbl"><em>a</em><strong>a</strong></span>=1 and <span class="intbl"><em>b</em><strong>a</strong></span>=<span class="intbl"><em>1</em><strong><span class="golden">φ</span></strong></span>, which gets us:</p>
<div class="def">
<p class="center large">φ = 1 + <span class="intbl"><em>1</em><strong>φ</strong></span></p>
</div>
<p>So the Golden Ratio can be defined in terms of itself!</p>
<p>Let us test it using just a few digits of accuracy:</p>
<div class="tbl">
<div class="row"><span class="left"><span class="golden">φ</span>&nbsp; =</span><span class="right">1 + <span class="intbl"><em>1</em><strong>1.618</strong></span></span></div>
<div class="row"><span class="left">=</span><span class="right">1 + 0.61805...</span></div>
<div class="row"><span class="left">=</span><span class="right">1.61805...</span></div>
</div>
<p>With more digits we would be more accurate.</p>
<h2>Calculating It</h2>
<p>You can use that formula to try and calculate <span class="golden">φ</span> yourself.</p>
<p>First <b>guess</b> its value, then do this calculation again and again:</p>
<ul>
<li>A) divide 1 by your value (=1/value)</li>
<li>B) add 1</li>
<li>C) now use <i>that</i> value and start again at A</li>
</ul>
<p>With a calculator, just keep pressing "1/x", "+", "1", "=", around and around.</p>
<p>I started with 2 and got this:</p>
<div class="simple">
<table style="border: 0; margin:auto;">
<tbody>
<tr style="text-align:center;">
<th>value</th>
<th>1/value</th>
<th>1/value + 1</th>
</tr>
<tr style="text-align:center;">
<td><b>2</b></td>
<td>1/2 = 0.5</td>
<td> 0.5 + 1 = <b>1.5</b></td>
</tr>
<tr style="text-align:center;">
<td><b>1.5</b></td>
<td>1/1.5 = 0.666...</td>
<td>0.666... + 1 = <b>1.666...</b></td>
</tr>
<tr style="text-align:center;">
<td><b>1.666...</b></td>
<td>1/1.666... = 0.6</td>
<td>0.6 + 1 = <b>1.6</b></td>
</tr>
<tr style="text-align:center;">
<td><b>1.6</b></td>
<td>1/1.6 = 0.625</td>
<td>0.625 + 1 = <b>1.625</b></td>
</tr>
<tr style="text-align:center;">
<td><b>1.625</b></td>
<td>1/1.625 = 0.6153...</td>
<td>0.6154... + 1 = <b>1.6153...</b></td>
</tr>
<tr style="text-align:center;">
<td><b>1.6153...</b></td>
<td>&nbsp;</td>
<td>&nbsp;</td>
</tr>
</tbody></table>
</div>
<p>It gets closer and closer to <span class="golden">φ</span> the more we go.</p>
<p>But there are better ways to calculate it to thousands of decimal places quite quickly.</p>
<p style="float:right; margin: 0 0 25px 10px;"><img src="images/golden-ratio-construct-1.svg" alt="golden ratio construction step 1" height="221" width="188"></p>
<h2>Drawing It</h2>
<p>Here is one way to draw a rectangle with the Golden Ratio:</p>
<ul>
<li>Draw a square of size "1"</li>
<li>Place a dot half way along one side</li>
<li>Draw a line from that point to an opposite corner</li>
</ul>
<div style="clear:both"></div>
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/golden-ratio-construct.svg" alt="golden ratio construction" height="215" width="261"></p>
<ul>
<li>Now turn that line so that it runs along the square's side</li>
<li>Then you can extend the square to be a rectangle with the Golden Ratio!</li>
</ul>
<div style="clear:both"></div>
<p>(Where did <b><span class="intbl"><em>√5</em><strong>2</strong></span></b> come from? See footnote*)</p>
<h2>A Quick Way to Calculate</h2>
<p>That rectangle above shows us a simple formula for the Golden Ratio.</p>
<p>When the short side is <b>1</b>, the long side is <b><span class="intbl"><em>1</em><strong>2</strong></span>+<span class="intbl"><em>√5</em><strong>2</strong></span></b>, so:</p>
<div class="def">
<p class="center large">φ = <span class="intbl"><em>1</em><strong>2</strong></span> + <span class="intbl"><em>√5</em><strong>2</strong></span></p>
</div>
<p>The square root of 5 is approximately 2.236068, so the Golden Ratio is approximately 0.5 + 2.236068/2 = 1.618034. This is an easy way to calculate it when you need it.</p>
<div class="fun">
<p><b>Interesting fact</b>: the Golden Ratio is also equal to <b>2 × sin(54°)</b>, get your calculator and check!</p>
</div>
<h2>Fibonacci Sequence</h2>
<p>There is a special relationship between the Golden Ratio and the <a href="fibonacci-sequence.html">Fibonacci Sequence</a>:</p>
<p class="center"><span class="large">0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...</span></p>
<p class="center">(The next number is found by adding up the two numbers before it.)</p>
<p>And here is a surprise: when we take any two successive <i>(one after the other)</i> Fibonacci Numbers, <b>their ratio is very close to the Golden Ratio</b>.</p>
<p>In fact, the bigger the pair of Fibonacci Numbers, the closer the approximation. Let us try a few:</p>
<table style="border: 0; margin:auto;">
<tbody>
<tr>
<th width="50">
<div align="right">A</div> </th>
<th width="50">
<div align="right">B</div> </th>
<th width="20">&nbsp;</th>
<th width="100">B/A</th>
</tr>
<tr>
<td style="width:50px;">
<div align="right">2</div> </td>
<td style="width:50px;">
<div align="right">3</div> </td>
<td style="width:20px;">&nbsp;</td>
<td style="width:100px;">1.5</td>
</tr>
<tr>
<td style="width:50px;">
<div align="right">3</div> </td>
<td style="width:50px;">
<div align="right">5</div> </td>
<td style="width:20px;">&nbsp;</td>
<td style="width:100px;">1.666666666...</td>
</tr>
<tr>
<td style="width:50px;">
<div align="right">5</div> </td>
<td style="width:50px;">
<div align="right">8</div> </td>
<td style="width:20px;">&nbsp;</td>
<td style="width:100px;">1.6</td>
</tr>
<tr>
<td style="width:50px;">
<div align="right">8</div> </td>
<td style="width:50px;">
<div align="right">13</div> </td>
<td style="width:20px;">&nbsp;</td>
<td style="width:100px;">1.625</td>
</tr>
<tr>
<td height="14" width="50">
<div align="right">...</div> </td>
<td height="14" width="50">
<div align="right">...</div> </td>
<td height="14" width="20">&nbsp;</td>
<td height="14" width="100">...</td>
</tr>
<tr>
<td style="width:50px;">
<div align="right">144</div> </td>
<td style="width:50px;">
<div align="right">233</div> </td>
<td style="width:20px;">&nbsp;</td>
<td style="width:100px;">1.618055556...</td>
</tr>
<tr>
<td style="width:50px;">
<div align="right">233</div> </td>
<td style="width:50px;">
<div align="right">377</div> </td>
<td style="width:20px;">&nbsp;</td>
<td style="width:100px;">1.618025751...</td>
</tr>
<tr>
<td height="14" width="50">
<div align="right">...</div> </td>
<td height="14" width="50">
<div align="right">...</div> </td>
<td height="14" width="20">&nbsp;</td>
<td height="14" width="100">...</td>
</tr>
</tbody></table>
<p>We don't have to start with <b>2 and 3</b>, here I randomly chose <b>192 and 16</b> (and got the sequence <i>192, 16,208,224,432,656, 1088, 1744, 2832, 4576, 7408, 11984, 19392, 31376, ...</i>):</p>
<table style="border: 0; margin:auto;">
<tbody>
<tr>
<th width="50"> <div align="right">A </div></th>
<th width="50"> <div align="right">B </div></th>
<th width="20">&nbsp;</th>
<th width="100"> <div align="left">B / A</div></th>
</tr>
<tr>
<td style="width:50px;">
<div align="right"><b>192</b></div></td>
<td style="width:50px;">
<div align="right"><b>16</b></div></td>
<td style="width:20px;">&nbsp;</td>
<td style="width:100px;">0.08333333...</td>
</tr>
<tr>
<td style="width:50px;">
<div align="right">16</div></td>
<td style="width:50px;">
<div align="right">208</div></td>
<td style="width:20px;">&nbsp;</td>
<td style="width:100px;">13</td>
</tr>
<tr>
<td style="width:50px;">
<div align="right">208</div></td>
<td style="width:50px;">
<div align="right">224</div></td>
<td style="width:20px;">&nbsp;</td>
<td style="width:100px;">1.07692308...</td>
</tr>
<tr>
<td style="width:50px;">
<div align="right">224</div></td>
<td style="width:50px;">
<div align="right">432</div></td>
<td style="width:20px;">&nbsp;</td>
<td style="width:100px;">1.92857143...</td>
</tr>
<tr>
<td height="14" width="50">
<div align="right">...</div></td>
<td height="14" width="50">
<div align="right">...</div></td>
<td height="14" width="20">&nbsp;</td>
<td height="14" width="100">...</td>
</tr>
<tr>
<td style="width:50px;">
<div align="right">7408</div></td>
<td style="width:50px;">
<div align="right">11984</div></td>
<td style="width:20px;">&nbsp;</td>
<td style="width:100px;">1.61771058...</td>
</tr>
<tr>
<td style="width:50px;">
<div align="right">11984</div></td>
<td style="width:50px;">
<div align="right">19392</div></td>
<td style="width:20px;">&nbsp;</td>
<td style="width:100px;">1.61815754...</td>
</tr>
<tr>
<td height="14" width="50">
<div align="right">...</div></td>
<td height="14" width="50">
<div align="right">...</div></td>
<td height="14" width="20">&nbsp;</td>
<td height="14" width="100">...</td>
</tr>
</tbody></table>
<h2>The Most Irrational ...</h2>
<p>I believe the Golden Ratio is the <b>most</b> <a href="../irrational-numbers.html">irrational number</a>. Here is why ...</p>
<table style="border: 0; margin:auto;">
<tbody>
<tr>
<td>We saw before that the Golden Ratio can be defined in terms of itself,<br>
like this:</td>
</tr>
<tr>
<td class="center larger">φ = 1 + <span class="intbl"><em>1</em><strong>φ</strong></span></td>
</tr>
<tr>
<td><i>(In numbers: 1.61803... = 1 + 1/1.61803...)</i></td>
</tr>
<tr>
<td>&nbsp;</td>
</tr>
<tr>
<td>That can be expanded into this fraction that goes on for ever<br> (called a <i>"continued fraction"</i>):</td>
</tr>
<tr>
<td class="center larger"><img src="images/phi-continued-fraction.png" alt="phi continued fraction: phi = 1+1/(1+1/(1+1/(1+1/..." height="56" width="161"></td>
</tr>
</tbody></table><br>
<p class="center large">So, it neatly slips in between simple fractions.</p>
<p>Note: many other irrational numbers are close to rational numbers (such as <a href="pi.html">Pi</a> = 3.141592654... is pretty close to 22/7 = 3.1428571...)</p>
<p>&nbsp;</p>
<p style="float:left; margin: 0 10px 5px 0;"><img src="../geometry/images/pentagram-lengths.svg" alt="pentagram lengths" height="" width=""></p>
<h2>Pentagram</h2>
<p>No, not witchcraft! The pentagram is more famous as a magical or holy symbol. And it has the Golden Ratio in it:</p>
<ul>
<li>a/b = 1.618...</li>
<li>b/c = 1.618...</li>
<li>c/d = 1.618...</li>
</ul>
<p>Read more at <a href="../geometry/pentagram.html">Pentagram</a>.</p>
<h2>Other Names</h2>
<p>The Golden Ratio is also sometimes called the <b>golden section</b>, <b>golden mean</b>, <b>golden number</b>, <b>divine proportion</b>, <b>divine section</b> and <b>golden proportion</b>.</p>
<h2>Footnotes for the Keen</h2>
<div class="def">
<h3>* Where did √5/2 come from?</h3>
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/golden-ratio-r5-2.svg" alt="golden ratio square root of 5 over 2" height="223" width="189"></p>
<p>With the help of <a href="../pythagoras.html">Pythagoras</a>:</p>
<p class="so">c<sup>2</sup> = a<sup>2</sup> + b<sup>2</sup></p>
<p class="so">c<sup>2</sup> = (<span class="intbl"><em>1</em><strong>2</strong></span>)<sup>2</sup> + 1<sup>2</sup></p>
<p class="so">c<sup>2</sup> = <span class="intbl"><em>1</em><strong>4</strong></span> + 1</p>
<p class="so">c<sup>2</sup> = <span class="intbl"><em>5</em><strong>4</strong></span></p>
<p class="so">c = √(<span class="intbl"><em>5</em><strong>4</strong></span>)</p>
<p class="so">c = <span class="intbl"><em>√5</em><strong>2</strong></span></p>
</div><p>&nbsp;</p>
<div class="def">
<h3>Solving using the Quadratic Formula</h3>
<p>We can find the value of <span class="golden">φ</span> this way:</p>
<div class="tbl">
<div class="row"><span class="left">Start with:</span><span class="right">φ = 1 + <span class="intbl"><em>1</em><strong>φ</strong></span></span></div>
<div class="row"><span class="left">Multiply both sides by φ:</span><span class="right">φ<sup>2</sup> = φ + 1</span></div>
<div class="row"><span class="left">Rearrange to:</span><span class="right">φ<sup>2</sup> φ 1 = 0</span></div>
</div>
<p>Which is a <a href="../algebra/quadratic-equation.html">Quadratic Equation</a> and we can use the Quadratic Formula:</p>
<p class="center larger">φ = <span class="intbl"> <em>b ± √(b<sup>2 </sup> 4ac)</em> <strong>2a</strong></span></p>
<p>Using <b>a=1</b>, <b>b=1</b> and <b>c=1</b> we get:</p>
<p class="center larger">φ = <span class="intbl"> <em>1 ± √(1+ 4)</em> <strong>2</strong></span></p>
<p>And the positive solution simplifies to:</p>
<p class="center larger">φ = <span class="intbl"><em>1</em><strong>2</strong></span> + <span class="intbl"><em>√5</em><strong>2</strong></span></p>
<p>Ta da!</p>
</div>
<p>&nbsp;</p>
<div class="def">
<h3>Kepler Triangle</h3>
<div class="tbl">
<div class="row"><span class="left">We saw above that:</span><span class="right">φ<sup>2</sup> = φ + 1</span></div>
<div class="row"><span class="left">And Pythagoras says a right-angled triangle has:</span><span class="right">c<sup>2</sup> = a<sup>2</sup> + b<sup>2</sup></span></div>
</div>
<p>That inspired a man called Johannes Kepler to create this triangle:</p>
<p class="center"><img src="images/kepler-triangle.svg" alt="Kepler triangle" height="354" width="327"></p>
<p>It is really cool because:</p>
<ul>
<li>it has Pythagoras and <span class="golden">φ</span> together</li>
<li>the ratio of the sides is <b>1 : √φ : φ</b>, making a <a href="../algebra/sequences-sums-geometric.html">Geometric Sequence</a>.</li></ul></div>
<p>&nbsp;</p>
<div class="questions">2014, 2015, 15017, 8339, 8340, 8341, 8342, 15014, 15015, 8342</div>
<div class="related">
<a href="nature-golden-ratio-fibonacci.html">Nature and The Golden Ratio</a>
<a href="fibonacci-sequence.html">Fibonacci Sequence</a>
<a href="../geometry/pentagram.html">Pentagram</a>
<a href="../geometry/index.html">Geometry Index</a>
</div>
<!-- #EndEditable -->
</article>
<div id="adend" class="centerfull noprint"></div>
<footer id="footer" class="centerfull noprint"></footer>
<div id="copyrt">Copyright © 2022 Rod Pierce</div>
</div>
</body><!-- #EndTemplate -->
<!-- Mirrored from www.mathsisfun.com/numbers/golden-ratio.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:38:14 GMT -->
</html>