Lucas Kent e39465ad2f Changes to be committed:
new file:   Files/flashplayer_32_sa.exe
	new file:   favicon.ico
	new file:   globe.gif
	new file:   imgs/download.png
	new file:   imgs/zuck.jpg
	new file:   index.html
	new file:   other.ico
	new file:   script.js
	new file:   site.webmanifest
	new file:   sitemap.html
	new file:   styles/backround.css
	new file:   styles/border.css
	new file:   styles/fonts/Titillium_Web/OFL.txt
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf
	new file:   styles/fonts/webfontkit-20221027-163353/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2
	new file:   styles/fonts/webfontkit-20221027-165950/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2
	new file:   styles/style.css
	new file:   tools/2048/.gitignore
	new file:   tools/2048/.jshintrc
	new file:   tools/2048/CONTRIBUTING.md
	new file:   tools/2048/LICENSE.txt
	new file:   tools/2048/README.md
	new file:   tools/2048/Rakefile
	new file:   tools/2048/favicon.ico
	new file:   tools/2048/index.html
	new file:   tools/2048/js/animframe_polyfill.js
	new file:   tools/2048/js/application.js
	new file:   tools/2048/js/bind_polyfill.js
	new file:   tools/2048/js/classlist_polyfill.js
	new file:   tools/2048/js/game_manager.js
	new file:   tools/2048/js/grid.js
	new file:   tools/2048/js/html_actuator.js
	new file:   tools/2048/js/keyboard_input_manager.js
	new file:   tools/2048/js/local_storage_manager.js
	new file:   tools/2048/js/tile.js
    new file:   tools/2048/meta/apple-touch-icon.png
	new file:   tools/webretro/cores/neocd_libretro.js
	new file:   tools/webretro/cores/neocd_libretro.wasm
	new file:   tools/webretro/cores/nestopia_libretro.js
	new file:   tools/webretro/cores/nestopia_libretro.wasm
	new file:   tools/webretro/cores/o2em_libretro.js
	new file:   tools/webretro/cores/o2em_libretro.wasm
	new file:   tools/webretro/cores/opera_libretro.js
	new file:   tools/webretro/cores/opera_libretro.wasm
2022-11-02 08:40:01 -04:00

434 lines
25 KiB
HTML

<!doctype html>
<html lang="en"><!-- #BeginTemplate "/Templates/Main.dwt" --><!-- DW6 -->
<!-- Mirrored from www.mathsisfun.com/money/compound-interest.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:32:25 GMT -->
<head>
<!-- #BeginEditable "doctitle" -->
<title>Compound Interest</title>
<meta name="description" content="With Compound Interest, you work out the interest for the first period, add it to the total, and then calculate the interest for the next period" />
<!-- #EndEditable -->
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
<meta http-equiv="content-type" content="text/html; charset=utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
<meta name="HandheldFriendly" content="true">
<meta http-equiv="pics-label" content='(PICS-1.1 "http://www.classify.org/safesurf/" L gen true for "http://www.mathsisfun.com" r (SS~~000 1))'>
<link rel="stylesheet" type="text/css" href="../style3.css" />
<script src="../main3.js" type="text/javascript"></script>
</head>
<body id="bodybg">
<div class="bg">
<div id="stt"></div>
<div id="hdr"></div>
<div id="logo"><a href="../index.html"><img src="../images/style/logo.svg" alt="Math is Fun" /></a></div>
<div id="gtran"><script type="text/javascript">document.write(getTrans());</script></div>
<div id="gplus"><script type="text/javascript">document.write(getGPlus());</script></div>
<div id="adTopOuter" class="centerfull noprint">
<div id="adTop">
<script type="text/javascript">document.write(getAdTop());</script>
</div>
</div>
<div id="adHide">
<div id="showAds1"><a href="javascript:showAds()">Show Ads</a></div>
<div id="hideAds1"><a href="javascript:hideAds()">Hide Ads</a><br>
<a href="../about-ads.html">About Ads</a></div>
</div>
<div id="menuWide" class="menu">
<script type="text/javascript">document.write(getMenu(0));</script>
</div>
<div id="linkto">
<div id="linktort"><script type="text/javascript">document.write(getLinks());</script></div>
</div>
<div id="search" role="search"><script type="text/javascript">document.write(getSearch());</script></div>
<div id="menuSlim" class="menu">
<script type="text/javascript">document.write(getMenu(1));</script>
</div>
<div id="menuTiny" class="menu">
<script type="text/javascript">document.write(getMenu(2));</script>
</div>
<div id="extra"></div>
</div>
<div id="content" role="main"><!-- #BeginEditable "Body" -->
<h1 align="center">Compound Interest</h1>
<p align="center"><i>You may wish to read <a href="interest.html">Introduction to Interest</a> first</i></p>
<p>With Compound Interest, you work out the interest for the first period, add it to the total, and <b>then</b> calculate the interest for the next period, and so on ..., like this:</p>
<div align="center"><img src="images/interest-compound-flow.svg" alt="interest compound $1000, 10%=$100, $1100, 10%=$110, $1210, 10%=$121, etc " style="max-width:100%" /></div>
<p>It grows faster and faster like this:</p>
<p class="center"><img src="images/compound-graph-10.svg" alt="compound graph 7 years at 10%" /></p>
<p>Here are the calculations for 5 Years at 10%:</p>
<div class="beach">
<table width="90%" border="0" align="center">
<tr>
<th width="18%" height="29">
<div align="center">Year</div> </th>
<th width="18%" height="29">
<div align="center">Loan at Start</div> </th>
<th width="41%" height="29">
<div align="center">Interest</div> </th>
<th width="23%" height="29">
<div align="center">Loan at End</div> </th>
</tr>
<tr>
<td width="18%">
<div align="center">0 (Now)</div> </td>
<td width="18%">
<div align="center">$1,000.00</div> </td>
<td width="41%">
<div align="center">($1,000.00 &times; 10% = ) <b>$100.00</b></div> </td>
<td width="23%">
<div align="center">$1,100.00</div> </td>
</tr>
<tr>
<td width="18%">
<div align="center">1</div> </td>
<td width="18%">
<div align="center">$1,100.00</div> </td>
<td width="41%">
<div align="center">($1,100.00 &times; 10% = ) <b>$110.00</b></div> </td>
<td width="23%">
<div align="center">$1,210.00</div> </td>
</tr>
<tr>
<td width="18%">
<div align="center">2</div> </td>
<td width="18%">
<div align="center">$1,210.00</div> </td>
<td width="41%">
<div align="center">($1,210.00 &times; 10% = ) <b>$121.00</b></div> </td>
<td width="23%">
<div align="center">$1,331.00</div> </td>
</tr>
<tr>
<td width="18%">
<div align="center">3</div> </td>
<td width="18%">
<div align="center">$1,331.00</div> </td>
<td width="41%">
<div align="center">($1,331.00 &times; 10% = ) <b>$133.10</b></div> </td>
<td width="23%">
<div align="center">$1,464.10</div> </td>
</tr>
<tr>
<td width="18%">
<div align="center">4</div> </td>
<td width="18%">
<div align="center">$1,464.10</div> </td>
<td width="41%">
<div align="center">($1,464.10 &times; 10% = ) <b>$146.41</b></div> </td>
<td width="23%">
<div align="center">$1,610.51</div> </td>
</tr>
<tr>
<td width="18%">
<div align="center">5</div> </td>
<td width="18%">
<div align="center">$1,610.51</div> </td>
<td width="41%">
<div align="center"></div> </td>
<td width="23%">
<div align="center"></div> </td>
</tr>
</table>
</div>
<p>Those calculations are done one step at a time:</p>
<ol>
<li>Calculate the Interest (= &quot;Loan at Start&quot; &times; Interest Rate)</li>
<li>Add the Interest to the &quot;Loan at Start&quot; to get the &quot;Loan at End&quot; of the year</li>
<li>The &quot;Loan at End&quot; of the year is the &quot;Loan at Start&quot; of the <b>next</b> year</li>
</ol>
<p>A simple job, with lots of calculations. </p>
<p class="large">But there are quicker ways, using some clever mathematics.</p>
<h2>Make A Formula</h2>
<p>Let us make a formula for the above ... just looking at the first year to begin with:</p>
<p align="center">$1,000.00 + ($1,000.00 &times; 10%) = <b>$1,100.00</b></p>
<p>We can rearrange it like this:</p>
<p class="center"><img src="images/interest-compound1.svg" alt="interest compound step-by-step" /></p>
<br />
<p class="large" align="center">So, adding 10% interest is the same as multiplying by 1.10</p>
<p class="large" align="center"><img src="images/pct-to-mult.svg" alt="+10% -> x1.10" /></p>
<table border="0" align="center">
<tr>
<td align="right"><i><b> so this:</b></i></td>
<td align="right">&nbsp;</td>
<td align="right">$1,000 + ($1,000 x 10%) = $1,000 + $100 = <b>$1,100</b></td>
</tr>
<tr>
<td align="right"><i><b>is the same as:</b></i></td>
<td align="right">&nbsp;</td>
<td align="right">$1,000 &times; 1.10 = <b>$1,100</b></td>
</tr>
</table>
<div class="def">
<p>Note: the Interest Rate was turned into a decimal by dividing by 100:</p>
<p class="center"> <b>10% = 10/100 = 0.10</b></p>
<p> Read <a href="../percentage.html">Percentages</a> to learn more, but in practice just move the decimal point 2 places, like this:</p>
<p class="center">10% &rarr; 1.0 &rarr; <b>0.10</b></p>
<p>Or this: </p>
<p class="center">6% &rarr; 0.6 &rarr; <b>0.06</b></p>
</div>
<p>The result is that we can do a year in one step:</p>
<ol>
<li><b> Multiply the &quot;Loan at Start&quot; by (1 + Interest Rate) to get &quot;Loan at End&quot;</b></li>
</ol>
<p>Now, here is the magic ...</p>
<p class="center larger">... the same formula works for any year! </p>
<ul>
<li>We could do the next year like this: <b>$1,100 &times; 1.10 = $1,210</b><br />
</li>
<li>And then continue to the following year: <b>$1,210 &times; 1.10 = $1,331</b><br />
</li>
<li>etc...</li>
</ul>
<p>So it works like this:</p>
<p align="center"><img src="images/interest-compound-flow2.svg" alt="interest compound $1000 x1.1 $1100 x1.1 $1210 x1.1 ..." style="max-width:100%" /><br />
</p>
<p class="larger">In fact we could go from the start straight to Year 5, if we<b> multiply 5 times</b>:
</p>
<p align="center" class="larger">$1,000 &times; 1.10 &times; 1.10 &times; 1.10 &times; 1.10 &times; 1.10 = <b>$1,610.51</b></p>
<p>But it is easier to write down a series of multiplies using <a href="../exponent.html">Exponents (or Powers)</a> like this:</p>
<div align="center"></div>
<p align="center"><img src="images/fv-example.gif" width="281" height="42" alt="$1000 x 1.10^5 = $1610.51" /> </p>
<p align="center">This does all the calculations in the top table in one go.</p>
<h2>The Formula</h2>
<p>We have been using a real example, but let's be more general by <b>using letters instead of numbers</b>, like this:</p>
<p align="center"><img src="images/fv-formula.svg" alt="PV x (1+r)^n = FV" /></p>
<p>(This is the same as above, but with PV = $1,000, r = 0.10, n = 5, and FV = $1,610.51)</p>
<p>Here is is written with &quot;FV&quot; first:</p>
<div class="def">
<p align="center"><span class="large">FV = PV &times; (1+r)<sup>n</sup></span> </p>
<p align="center">where <b>FV</b> = Future Value<br />
<b>PV</b> = Present Value<br />
<b>r</b> = annual interest rate<br />
<b>n</b> = number of periods</p>
</div>
<table width="90%" border="0" align="center">
<tr>
<td width="10%"><img src="../images/style/lightbulb.gif" width="75" height="75" alt="lightbulb" /></td>
<td width="90%"><i>This is the basic formula for Compound Interest. <br />
<br />
Remember it, because it is very useful.</i></td>
</tr>
</table>
<h3>Examples</h3>
<p>How about some examples ... <br />
...
what if the loan went for <b>15 Years</b>? ... just change the &quot;n&quot; value:</p>
<p align="center"><img src="images/fv-example2.gif" width="281" height="41" alt="$1000 x 1.10^15 = $4177.25" /></p>
<p>... and what if the loan was for 5 years, but the interest rate was only 6%? Here:</p>
<p align="center"><img src="images/fv-example3.gif" width="281" height="41" alt="$1000 x 1.06^5 = $1338.23" /></p>
<table border="0" align="center">
<tr>
<td align="right">Did you see how we just put the
6% into its place like this:</td>
<td><img src="images/percent-add.svg" alt="6% -> 1.06" /></td>
</tr>
</table>
<p>... and what if the loan was for 20 years at 8%? ... you work it out!</p>
<h2>Going &quot;Backwards&quot; to Work Out the Present Value</h2>
<p>Let's say your goal is to have $2,000 in 5 Years. You can get 10%, so <b>how much should you start with</b>?</p>
<p align="center">In other words, you know a Future Value, and <b>want to know a Present Value</b>.</p>
<p>We know that <b>multiplying</b> a Present Value (PV) by<span class="large"> </span><span class="larger">(1+r)<sup>n</sup></span> gives us the Future Value (FV), so we can go backwards by <b>dividing</b>, like this:</p>
<p align="center"><img src="images/pv-vs-fv.svg" alt="pv vs fv" /></p>
<p>So the Formula is:</p>
<p class="center large">PV = <span class="intbl"><em>FV</em><strong>(1+r)<sup>n</sup> </strong></span></p>
<p>And now we can calculate the answer:</p>
<div class="tbl">
<div class="row"><span class="left">PV =</span><span class="right"> <span class="intbl"><em>$2,000</em><strong>(1+0.10)<sup>5</sup> </strong></span> </span></div>
<div class="row"><span class="left">=</span><span class="right"> <span class="intbl"><em>$2,000</em><strong>1.61051</strong></span> </span></div>
<div class="row"><span class="left">=</span><span class="right"> $1,241.84</span></div>
</div>
<p>In other words, $1,241.84 will grow to $2,000 if you invest it at 10% for 5 years.</p>
<div class="example">
<p><b>Another Example:</b> How much do you need to invest now, to get $10,000 in 10 years at 8% interest rate?</p>
<div class="tbl">
<div class="row"><span class="left">PV =</span><span class="right"> <span class="intbl"><em>$10,000</em><strong>(1+0.08)<sup>10</sup> </strong></span> </span></div>
<div class="row"><span class="left">=</span><span class="right"> <span class="intbl"><em>$10,000</em><strong>2.1589</strong></span> </span></div>
<div class="row"><span class="left">=</span><span class="right"> $4,631.93</span></div>
</div>
<p>So, <b>$4,631.93</b> invested at 8% for 10 Years grows to $10,000</p>
</div>
<h2>Compounding Periods</h2>
<p>Compound Interest is not always calculated per year, it could be per month, per day, etc. <b>But if it is not per year it should say so!</b></p>
<div class="example">
<p>Example: you take out a $1,000 loan for 12 months and it says &quot;<b>1% per month</b>&quot;, how much do you pay back?</p>
<p>Just use the Future Value formula with &quot;n&quot; being the number of months:</p>
<div class="tbl">
<div class="row"><span class="left">FV =</span><span class="right"> PV &times; (1+r)<sup>n</sup> </span></div>
<div class="row"><span class="left">=</span><span class="right"> $1,000 &times; (1.01)<sup>12</sup> </span></div>
<div class="row"><span class="left">=</span><span class="right"> $1,000 &times; 1.12683 </span></div>
<div class="row"><span class="left">=</span><span class="right"> <b>$1,126.83</b> to pay back</span></div>
</div>
</div>
<p>And it is also possible to have yearly interest <i>but with several compoundings <b>within</b> the year</i>, which is called <a href="compound-interest-periodic.html">Periodic Compounding</a>.</p>
<div class="example">
<p>Example, 6% interest with &quot;<b>monthly compounding</b>&quot; does not mean 6% per month, it means 0.5% per month (6% divided by 12 months), and is worked out like this:</p>
<div class="tbl">
<div class="row"><span class="left">FV =</span><span class="right"> PV &times; (1+r/n)<sup>n</sup> </span></div>
<div class="row"><span class="left">=</span><span class="right"> $1,000 &times; (1 + 6%/12)<sup>12</sup> </span></div>
<div class="row"><span class="left">=</span><span class="right"> $1,000 &times; (1 + 0.5%)<sup>12</sup> </span> </div>
<div class="row"><span class="left">=</span><span class="right"> $1,000 &times; (1.005)<sup>12</sup> </span></div>
<div class="row"><span class="left">=</span><span class="right"> $1,000 &times; 1.06168... </span></div>
<div class="row"><span class="left">=</span><span class="right"> <b>$1,061.68</b> to pay back</span></div>
</div>
<p>This is equal to a <b>6.168%</b> <i>($1,000 grew to $1,061.68)</i> for the whole year. </p>
</div>
<p>So be careful to understand what is meant!</p>
<h2>APR</h2>
<p style="float:right; margin: 0 0 12px 25px;"><img src="images/home-load-ad.gif" width="122" height="89" alt="home loan ad" /><br>
<i>This ad looks like 6.25%, <br>
but <b>is really 6.335%</b></i></p>
<p>Because it is easy for loan ads to be confusing (sometimes on purpose!), the &quot;<b>APR</b>&quot; is often used. </p>
<p><b>APR</b> means &quot;<i><b>Annual Percentage Rate</b></i>&quot;: it shows how much you will actually be paying for the year (including compounding, fees, etc).</p>
<p>Here are some examples:</p>
<div class="example">
<p>Example 1: &quot;<b>1% per month</b>&quot; actually works out to be <b>12.683% APR</b> (if no fees)<b>.</b></p>
</div>
<div class="example">
<p>Example 2: &quot;<b>6% interest with monthly compounding</b>&quot; works out to be <b>6.168% </b><b>APR</b> (if no fees)<b>.</b></p>
</div>
<p>If you are shopping around, ask for the APR.</p>
<p>&nbsp;</p>
<h2>Break Time!</h2>
<p>So far we have looked at using <span class="larger">(1+r)<sup>n</sup> </span>to go from a Present Value (PV) to a Future Value (FV) and back again, plus some of the tricky things that can happen to a loan.</p>
<p>Now is a good time to have a break before we look at two more topics:</p>
<ul>
<li>How to work out the <b>Interest Rate</b> if you know PV, FV and the Number of Periods.</li>
<li>How to work out the <b>Number of Periods</b> if you know PV, FV and the Interest Rate</li>
</ul>
<p>&nbsp;</p>
<h2>Working Out The Interest Rate</h2>
<p>You can calculate the Interest Rate if you know a Present Value, a Future Value and how many Periods.</p>
<div class="example">
<p>Example: you have $1,000, and want it to grow to $2,000 in 5 Years, what <b>interest rate</b> do you need?</p>
<p>The formula is:</p>
<p class="large" align="center">r = ( FV / PV )<sup>1/n</sup> - 1</p>
<p>&nbsp;</p>
<p style="float:left; margin: 0 10px 5px 0;"><img src="images/calculator-exponent.gif" width="105" height="86" alt="calculator exponent button" /></p>
<p><i>Note: the little &quot;1/n&quot; is a <a href="../algebra/exponent-fractional.html">Fractional Exponent</a>, first calculate 1/n, then use that as the exponent on your calculator.</i></p>
<p><i>For example 2<sup>0.2</sup> is entered as <b>2, &quot;x^y&quot;, 0, ., 2, =</b></i></p>
<p>Now we can &quot;plug in&quot; the values to get the result:</p>
<div class="tbl">
<div class="row"><span class="left">r =</span><span class="right"> ( $2,000 / $1,000 )<sup>1/5</sup> &minus; 1 </span></div>
<div class="row"><span class="left">=</span><span class="right"> (2)<sup>0.2</sup> &minus; 1 </span></div>
<div class="row"><span class="left">=</span><span class="right"> 1.1487 &minus; 1 </span></div>
<div class="row"><span class="left">=</span><span class="right"> 0.1487</span></div>
</div>
<p>And 0.1487 as a percentage is <b>14.87%</b>,</p>
</div>
<p>So you need <b>14.87%</b> interest rate to turn $1,000 into $2,000 in 5 years.</p>
<div class="example">
<p><b>Another Example:</b> What interest rate do you need to turn $1,000 into $5,000 in 20 Years?</p>
<div class="tbl">
<div class="row"><span class="left">r =</span><span class="right"> ( $5,000 / $1,000 )<sup>1/20</sup> &minus; 1 </span></div>
<div class="row"><span class="left">=</span><span class="right"> (5)<sup>0.05</sup> &minus; 1 </span></div>
<div class="row"><span class="left">=</span><span class="right"> 1.0838 &minus; 1 </span></div>
<div class="row"><span class="left">=</span><span class="right"> 0.0838</span></div>
</div>
<p>And 0.0838 as a percentage is <b>8.38%</b>. </p>
<p>So <b>8.38%</b> will turn $1,000 into $5,000 in 20 Years.</p>
</div>
<h2>Working Out How Many Periods</h2>
<p>You can calculate how many Periods if you know a Future Value, a Present Value and the Interest Rate. </p>
<div class="example">
<h3>Example: you want to know how many periods it will take to turn $1,000 into $2,000 at 10% interest.</h3>
<p>This is the formula (note: it uses the natural logarithm function <i><b>ln</b></i>):</p>
<p align="center" class="large">n = <i>ln</i>(FV / PV) / <i>ln</i>(1 + r)</p>
<table width="95%" border="0" align="center">
<tr>
<td><img src="images/calculator-ln.gif" width="107" height="87" alt="calculator ln button" /></td>
<td width="82%">
<p><i>The &quot;<i><b>ln&quot;</b></i> function should be on a good calculator. </i></p>
<p><i>You could also use <i><b>log</b></i>, just don't mix the two.</i></p> </td>
</tr>
</table>
<p>Anyway, let's &quot;plug in&quot; the values:</p>
<div class="tbl">
<div class="row"><span class="left">n =</span><span class="right"> ln( $2,000/$1,000 ) / ln( 1 + 0.10 ) </span></div>
<div class="row"><span class="left">=</span><span class="right"> ln(2)/ln(1.10) </span></div>
<div class="row"><span class="left">=</span><span class="right"> 0.69315/0.09531 </span></div>
<div class="row"><span class="left">=</span><span class="right"> 7.27</span></div>
</div><p>Magic! It will need <b>7.27 years</b> to turn $1,000 into $2,000 at 10% interest.</p>
</div>
<div class="example">
<h3>Example: How many years to turn $1,000 into $10,000 at 5% interest?</h3>
<div class="tbl">
<div class="row"><span class="left">n =</span><span class="right"> ln( $10,000/$1,000 ) / ln( 1 + 0.05 ) </span></div>
<div class="row"><span class="left">=</span><span class="right"> ln(10)/ln(1.05) </span></div>
<div class="row"><span class="left">=</span><span class="right"> 2.3026/0.04879 </span></div>
<div class="row"><span class="left">=</span><span class="right"> 47.19</span></div>
</div>
<p>47 Years! But we are talking about a 10-fold increase, at only 5% interest.</p>
</div><p>&nbsp;</p>
<table border="0" align="center">
<tr>
<td><a href="compound-interest-calculator.html"><img src="images/comp-interest-calc-thumb.gif" width="150" height="142" border="0" alt="compound interest calculator" /></a></td>
<td>&nbsp;</td>
<td><h2>Calculator</h2>
<p>I also made a <a href="compound-interest-calculator.html">Compound Interest Calculator</a> that uses these formulas.</p></td>
</tr>
</table>
<h2>Summary</h2>
<p>The basic formula for Compound Interest is:</p>
<p class="center large">FV = PV (1+r)<sup>n</sup></p>
<p>Finds the <b>Future Value</b>, where: </p>
<ul>
<li>FV = Future Value, </li>
<li>PV = Present Value, </li>
<li>r = Interest Rate (as a decimal value), and </li>
<li>n = Number of Periods</li>
</ul>
<p>&nbsp;</p>
<p>And by rearranging that formula<i> (see <a href="compound-interest-derivation.html">Compound Interest Formula Derivation</a>)</i> we can find any value when we know the other three:</p>
<p>&nbsp;</p>
<p class="center large">PV = <span class="intbl"><em>FV</em><strong>(1+r)<sup>n</sup> </strong></span></p>
<p>Finds the <b>Present Value</b> when you know a Future Value, the Interest Rate and number of Periods.</p>
<p>&nbsp;</p>
<p class="center large">r = (FV/PV)<sup>(1/n)</sup> &minus; 1</p>
<p>Finds the <b>Interest Rate</b> when you know the Present Value, Future Value and number of Periods.</p>
<p>&nbsp;</p>
<p class="center large">n = <span class="intbl"><em><i>ln</i>(FV / PV)</em><strong><i>ln</i>(1 + r)</strong></span></p>
<p>Finds the number of <b>Periods</b> when you know the Present Value, Future Value and Interest Rate (note: <i><b>ln</b></i> is the <a href="../algebra/logarithms.html">logarithm</a> function)</p>
<h2>Annuities</h2>
<p>We have now covered what happens to a value as time goes by ... but what if we have a series of values, like <b> <b>regular loan payments</b> </b>or<b> yearly investments</b>? That is covered in the topic of <a href="annuities.html">Annuities</a>.</p>
<p></p>
<div class="questions">
<script type="text/javascript">getQ(2294, 2295, 2296, 2297, 2298, 2299, 2300, 2301, 2302, 2303);</script>&nbsp;
</div>
<div class="related"><a href="index.html">Money Index</a> <a href="interest.html">Introduction to Interest</a> <a href="investment-graph.html">Investment Graph</a> <a href="compound-interest-calculator.html">Compound Interest Calculator</a> <a href="compound-interest-derivation.html">Compound Interest Derivation</a> <a href="compound-interest-periodic.html">Compound Interest: Periodic Compounding</a></div>
<!-- #EndEditable --></div>
<div id="adend" class="centerfull noprint">
<script type="text/javascript">document.write(getAdEnd());</script>
</div>
<div id="footer" class="centerfull noprint">
<script type="text/javascript">document.write(getFooter());</script>
</div>
<div id="copyrt">
Copyright &copy; 2017 MathsIsFun.com
</div>
<script type="text/javascript">document.write(getBodyEnd());</script>
</body>
<!-- #EndTemplate -->
<!-- Mirrored from www.mathsisfun.com/money/compound-interest.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:32:28 GMT -->
</html>