lkarch.org/tools/mathisfun/www.mathsisfun.com/geometry/platonic-solids-why-five.html
Lucas Kent e39465ad2f Changes to be committed:
new file:   Files/flashplayer_32_sa.exe
	new file:   favicon.ico
	new file:   globe.gif
	new file:   imgs/download.png
	new file:   imgs/zuck.jpg
	new file:   index.html
	new file:   other.ico
	new file:   script.js
	new file:   site.webmanifest
	new file:   sitemap.html
	new file:   styles/backround.css
	new file:   styles/border.css
	new file:   styles/fonts/Titillium_Web/OFL.txt
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf
	new file:   styles/fonts/webfontkit-20221027-163353/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2
	new file:   styles/fonts/webfontkit-20221027-165950/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2
	new file:   styles/style.css
	new file:   tools/2048/.gitignore
	new file:   tools/2048/.jshintrc
	new file:   tools/2048/CONTRIBUTING.md
	new file:   tools/2048/LICENSE.txt
	new file:   tools/2048/README.md
	new file:   tools/2048/Rakefile
	new file:   tools/2048/favicon.ico
	new file:   tools/2048/index.html
	new file:   tools/2048/js/animframe_polyfill.js
	new file:   tools/2048/js/application.js
	new file:   tools/2048/js/bind_polyfill.js
	new file:   tools/2048/js/classlist_polyfill.js
	new file:   tools/2048/js/game_manager.js
	new file:   tools/2048/js/grid.js
	new file:   tools/2048/js/html_actuator.js
	new file:   tools/2048/js/keyboard_input_manager.js
	new file:   tools/2048/js/local_storage_manager.js
	new file:   tools/2048/js/tile.js
    new file:   tools/2048/meta/apple-touch-icon.png
	new file:   tools/webretro/cores/neocd_libretro.js
	new file:   tools/webretro/cores/neocd_libretro.wasm
	new file:   tools/webretro/cores/nestopia_libretro.js
	new file:   tools/webretro/cores/nestopia_libretro.wasm
	new file:   tools/webretro/cores/o2em_libretro.js
	new file:   tools/webretro/cores/o2em_libretro.wasm
	new file:   tools/webretro/cores/opera_libretro.js
	new file:   tools/webretro/cores/opera_libretro.wasm
2022-11-02 08:40:01 -04:00

486 lines
23 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html lang="en"><!-- #BeginTemplate "/Templates/Advanced.dwt" --><!-- DW6 -->
<!-- Mirrored from www.mathsisfun.com/geometry/platonic-solids-why-five.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:59:03 GMT -->
<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
<!-- #BeginEditable "doctitle" -->
<title>Platonic Solids - Why Five?</title>
<!-- #EndEditable -->
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
<meta name="HandheldFriendly" content="true">
<meta name="referrer" content="always">
<link rel="preload" href="../images/style/font-champ-bold.ttf" as="font" type="font/ttf" crossorigin="">
<link rel="preload" href="../style4.css" as="style">
<link rel="preload" href="../main4.js" as="script">
<link rel="stylesheet" href="../style4.css">
<script src="../main4.js" defer="defer"></script>
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async="" src="https://www.googletagmanager.com/gtag/js?id=UA-29771508-1"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'UA-29771508-1');
</script>
</head>
<body id="bodybg" class="adv">
<div id="stt"></div>
<div id="adTop"></div>
<header>
<div id="hdr"></div>
<div id="tran"></div>
<div id="adHide"></div>
<div id="cookOK"></div>
</header>
<div class="mid">
<nav>
<div id="menuWide" class="menu"></div>
<div id="logo"><a href="../index.html"><img src="../images/style/logo-adv.svg" alt="Math is Fun Advanced"></a></div>
<div id="search" role="search"></div>
<div id="linkto"></div>
<div id="menuSlim" class="menu"></div>
<div id="menuTiny" class="menu"></div>
</nav>
<div id="extra"></div>
<article id="content" role="main">
<!-- #BeginEditable "Body" -->
<h1 class="center">Platonic Solids - Why Five?</h1>
<p class="center"><img src="images/poly-tetrahedron.svg" alt="Tetrahedron" height="94" width="90"><img src="images/poly-cube.svg" alt="Cube" height="88" width="88"><img src="images/poly-octahedron.svg" alt="Octahedron" height="86" width="85"><img src="images/poly-dodecahedron.svg" alt="Dodecahedron" height="93" width="93"> <img src="images/poly-icosahedron.svg" alt="Icosahedron" height="94" width="81"></p>
<p>A Platonic Solid is a <a href="common-3d-shapes.html">3D shape</a> where:</p>
<ul>
<li>each face is the same <a href="polygons.html">regular polygon</a></li>
<li>the same number of polygons meet at each vertex (corner)</li>
</ul>
<p>There are only five of them ... why?</p>
<h2>Simplest Reason: Angles at a Vertex</h2>
<p>The simplest reason there are only 5 Platonic Solids is this:</p>
<p style="float:left; margin: 0 10px 5px 0;"><img src="images/platonic-solids-why-5a.svg" alt="cube 3 faces meet at vertex" height="134" width="125"></p>
<p>At each vertex <b>at least 3 faces</b> meet (maybe more).</p>
<div style="clear:both"></div>
<p style="float:left; margin: 0 10px 5px 0;"><img src="images/platonic-solids-why-5b.svg" alt="cube 3 times 90 degrees at vertex" height="134" width="125"></p>
<p>When we add up the internal angles that meet at a vertex,<br>
it must be <b>less than 360 degrees</b>.</p>
<div style="clear:both"></div>
<p style="float:left; margin: 0 10px 5px 0;"><img src="images/platonic-solids-why-5c.svg" alt="four sqaures make 360 degrees, but flat" height="157" width="157"></p>
<p>Because at 360° the shape flattens out!</p>
<div style="clear:both"></div>
<p>And, since a Platonic Solid's faces are all identical <a href="polygons.html">regular polygons</a>, we get:</p>
<table style="border: 0; margin:auto;">
<tbody>
<tr>
<td align="center" width="90" valign="top"><img src="images/triangle-regular.svg" alt="regular triangle" height="100" width="110"></td>
<td>
<p>A regular triangle has internal angles of 60°, so we can have:</p>
<ul>
<li>3 triangles (3×60°=180°) meet</li>
<li>4 triangles (4×60°=240°) meet</li>
<li>or 5 triangles (5×60°=300°) meet</li>
</ul>
</td>
</tr>
<tr>
<td align="center" valign="top"><img src="images/quadrilateral-regular.svg" alt="regular quadrilateral" height="100" width="110"></td>
<td>
<p>A square has internal angles of 90°, so there is only:</p>
<ul>
<li>3 squares (3×90°=270°) meet</li>
</ul>
</td>
</tr>
<tr>
<td align="center" valign="top"><b><img src="images/pentagon-regular.svg" alt="pentagon regular" height="100" width="110"></b></td>
<td>
<p>A regular pentagon has internal angles of 108°, so there is only:</p>
<ul>
<li>3 pentagons (3×108°=324°) meet</li>
</ul>
</td>
</tr>
<tr>
<td align="center" valign="top"><b><img src="images/hexagon-regular.svg" alt="hexagon regular" height="100" width="110"></b></td>
<td>
<p>A regular hexagon has internal angles of 120°, but 3×120°=360° which <b>won't work</b> because at 360° the shape flattens out.</p>
<p>So a regular pentagon is as far as we can go.</p>
</td>
</tr>
</tbody></table>
<p>And this is the result:</p>
<div class="beach">
<table style="border: 0; margin:auto;">
<tbody>
<tr style="text-align:center;">
<th width="200">At each vertex:</th>
<th width="150">Angles at Vertex<br>
(Less than 360°)</th>
<th width="100">Solid</th>
<th width="50">&nbsp;</th>
</tr>
<tr style="text-align:center;">
<td> 3 triangles meet</td>
<td>180°</td>
<td style="width:100px;">tetrahedron</td>
<td style="width:50px;"><img src="images/poly-tetrahedron.svg" alt="Tetrahedron" height="94" width="90"></td>
</tr>
<tr style="text-align:center;">
<td>4 triangles meet</td>
<td>240°</td>
<td style="width:100px;">octahedron</td>
<td style="width:50px;"><img src="images/poly-octahedron.svg" alt="Octahedron" height="86" width="85"></td>
</tr>
<tr style="text-align:center;">
<td> 5 triangles meet</td>
<td>300°</td>
<td> icosahedron </td>
<td><img src="images/poly-icosahedron.svg" alt="Icosahedron" height="94" width="81"></td>
</tr>
<tr style="text-align:center;">
<td>3 squares meet</td>
<td>270°</td>
<td style="width:100px;">cube</td>
<td style="width:50px;"><img src="images/poly-cube.svg" alt="Cube" height="88" width="88"></td>
</tr>
<tr style="text-align:center;">
<td>3 pentagons meet</td>
<td>324°</td>
<td style="width:100px;"> dodecahedron</td>
<td style="width:50px;"><img src="images/poly-dodecahedron.svg" alt="Dodecahedron" height="93" width="93"></td>
</tr>
</tbody></table>
<p>Anything else has 360° or more at a vertex, which is impossible. Example: 4 regular pentagons (4×108° = 432°) won't work. And 3&nbsp;regular hexagons (3×120° = 360°) won't work either.</p>
</div>
<p>And that is the simplest reason.</p>
<h2><b>Another Reason (using Topology)</b></h2>
<p>Just for fun, let us look at another (slightly more complicated) reason.</p>
<p class="fun">In a nutshell: it is impossible to have more than 5 platonic solids, because any other possibility violates simple rules about the number of edges, corners and faces we can have together.</p>
<p>It begins with Euler's Formula ...</p>
<h2>Euler's Formula</h2>
<p>Do you know about <a href="eulers-formula.html">Euler's Formula</a>?</p>
<p>It says: for any convex polyhedron (which includes the <a href="../platonic_solids.html">Platonic Solids</a>) the <b>Number of Faces</b> plus the <b>Number of Vertices</b> (corner points) minus the <b>Number of Edges</b> always equals&nbsp;2</p>
<p class="center larger"><img src="../images/style/dot-blue.gif" alt="dot" height="14" width="14"> It is written: <b>F + V E = 2</b></p>
<div class="example">
<p style="float:left; margin: 0 10px 5px 0;"><img src="images/poly-cube.svg" alt="hexahedron" height="88" width="88"></p>
<p>Try it on the cube:</p>
<p>A cube has 6 Faces, 8 Vertices, and 12 Edges,</p>
<p class="center">so:</p>
<p class="center larger">6 + 8 12 = <b>2</b></p>
</div><br>
<div class="beach">
<table style="border: 0; margin:auto;">
<tbody>
<tr>
<td style="text-align:right;">
<p>To see why this works, imagine taking the cube and adding an edge<br>
(say from corner to corner of one face).<br>
<br>
We get an extra edge, plus an extra face:</p>
<p class="larger"><b>7</b> + 8 <b>13</b> = 2</p></td>
<td><img src="images/cube-extra-face.svg" alt="cube extra face" height="88" width="88"></td>
</tr>
<tr>
<td style="text-align:right;">&nbsp;</td>
<td>&nbsp;</td>
</tr>
<tr>
<td style="text-align:right;">
<p>Likewise when we include another vertex<br>
we get an extra edge, too.</p>
<p class="larger">6 + <b>9</b> <b>13</b> = 2.</p></td>
<td><img src="images/cube-extra-vertex.svg" alt="cube extra vertex" height="88" width="88"></td>
</tr>
<tr>
<td style="text-align:right;"><i><b>"No matter what we do, we always end up with 2"</b><br>
(But only for this type of Polyhedron ... read on!)</i></td>
<td>&nbsp;</td>
</tr>
</tbody></table>
</div>
<h2>Faces Meet</h2>
<p>Next, think about a typical platonic solid. What kind of faces does it have, and how many meet at a corner (vertex)?</p>
<div class="simple">
<table align="center" width="90%" border="0">
<tbody>
<tr>
<td colspan="2">The faces can be triangles (3 sides), squares (4 sides), etc. </td>
</tr>
<tr>
<td width="8%"><img src="../images/style/right-arrow.gif" alt="right arrow" height="46" width="46"></td>
<td width="92%">Let us call this "<b>s</b>", the number of <b>s</b>ides each face has.</td>
</tr>
</tbody></table>
</div><br>
<div class="simple">
<table align="center" width="90%" border="0">
<tbody>
<tr>
<td colspan="2">Also, at each corner, how many faces meet? For a cube 3 faces meet at each corner. For an octahedron 4 faces meet at each corner.</td>
</tr>
<tr>
<td width="8%"><img src="../images/style/right-arrow.gif" alt="right arrow" height="46" width="46"></td>
<td width="92%">Let us call this "<b>m</b>" (how many faces <b>m</b>eet at a corner).</td>
</tr>
</tbody></table>
<p>(Those two are actually enough to show what type of solid it is)</p>
</div>
<h2>Exploding Solids!</h2>
<p>Now, imagine we pull a solid apart, cutting each face free.</p>
<p>We get all these little flat shapes. And there are twice as many edges (because we cut along each edge).</p>
<p style="float:left; margin: 0 10px 5px 0;"><img src="images/cube-explode-edges.svg" alt="cube explode 12 edges become 24 edges" height="116" width="269"></p>
<p>Example: the cut-up-cube is now six little squares.</p>
<p>And each square has 4 edges, making a total of 24 edges (versus 12 edges when joined up to make a cube).</p>
<div style="clear:both"></div>
<p>So, how many edges? Twice as many as the original number of edges "E", or simply <b>2E</b></p>
<p>But this is also the same as counting all the edges of the little shapes. There are <b>s</b> <i>(number of sides per face)</i> times <b>F</b> <i>(number of faces)</i>.</p>
<p class="center larger"><img src="../images/style/dot-blue.gif" alt="dot" height="14" width="14"> This can be written as <b>sF = 2E</b></p>
<p class="center larger">&nbsp;</p>
<table style="border: 0; margin:auto;">
<tbody>
<tr>
<td style="text-align:right;">
<p>Likewise, when we cut it up, what <i>was</i> one corner will now be <i><b>several corners</b></i>.</p>
<p>In the case of a cube there are three times as many corners.</p>
</td>
<td><img src="images/cube-explode-corners.svg" alt="cube explode corners" height="152" width="170"></td>
</tr>
</tbody></table><br>
<ul>
<li>The new number of corners is: how many faces that meet at a corner (<b>m</b>) times how many vertices of the original solid (<b>V</b>), which is <b>mV</b></li>
<li>The new number of edges is: twice as many as the original solid, which is <b>2E</b></li>
</ul> And because we now have a collection of polygons there is the <b>same number of corners as edges</b> (a square has 4 corners and 4 edges, a pentagon has 5 corners and 5 edges, etc.)<br>
<p class="center larger"><img src="../images/style/dot-blue.gif" alt="dot" height="14" width="14"> This can be written as <b>mV = 2E</b></p>
<h2>Bring Equations Together</h2>
<p>That is all the equations we need, let us use them together:</p>
<p class="center"><span class="larger"><b>sF = 2E</b>, so <b>F = 2E/s</b><br>
<b>mV = 2E</b>, so <b>V = 2E/m</b></span></p>
<p>Now let us put those into "F+VE=2":</p>
<p class="center larger">F + V E = 2<br>
<b>2E/s</b> + <b>2E/m</b> E = 2</p>
<p>Next, some rearranging ... divide the lot by "2E":</p>
<p class="center larger">1/s + 1/m 1/2 = 1/E</p>
<p>Now, "E", the number of edges, cannot be less than zero, so "1/E" cannot be less than 0:</p>
<p class="center larger">1/s + 1/m 1/2 <b>&gt; 0</b></p>
<p>Or, more simply:</p>
<p class="center large">1/s + 1/m <b>&gt; 1/2</b></p>
<p>So, all we have to do now is try different values of:</p>
<ul>
<li>"<b>s</b>" (number of sides each face has, cannot be less than 3), and</li>
<li>"<b>m</b>" (number of faces that meet at a corner, cannot be less than 3),</li>
</ul>
<p>and we are done!</p>
<h2>The Possibilities!</h2>
<p>The possible answers are:</p>
<div class="beach">
<table style="border: 0; margin:auto;">
<tbody>
<tr style="text-align:center;">
<th width="50">s</th>
<th width="50">m</th>
<th width="100">1/s+1/m</th>
<th width="100">&gt; 0.5 ?</th>
</tr>
<tr style="text-align:center;">
<td style="width:50px;">3</td>
<td style="width:50px;">3</td>
<td style="width:100px;">0.666...</td>
<td style="width:100px;"><img src="../images/style/yes.svg" alt="yes" height="30" width="30"></td>
</tr>
<tr style="text-align:center;">
<td style="width:50px;">3</td>
<td style="width:50px;">4</td>
<td style="width:100px;">0.583...</td>
<td style="width:100px;"><img src="../images/style/yes.svg" alt="yes" height="30" width="30"></td>
</tr>
<tr style="text-align:center;">
<td style="width:50px;">4</td>
<td style="width:50px;">3</td>
<td style="width:100px;">0.583...</td>
<td style="width:100px;"><img src="../images/style/yes.svg" alt="yes" height="30" width="30"></td>
</tr>
<tr style="text-align:center;">
<td style="width:50px;">4</td>
<td style="width:50px;">4</td>
<td style="width:100px;">0.5</td>
<td style="width:100px;"><img src="../images/style/no.svg" alt="not" height="30" width="30"></td>
</tr>
<tr style="text-align:center;">
<td style="width:50px;">5</td>
<td style="width:50px;">3</td>
<td style="width:100px;">0.533...</td>
<td style="width:100px;"><img src="../images/style/yes.svg" alt="yes" height="30" width="30"></td>
</tr>
<tr style="text-align:center;">
<td style="width:50px;">3</td>
<td style="width:50px;">5</td>
<td style="width:100px;">0.533...</td>
<td style="width:100px;"><img src="../images/style/yes.svg" alt="yes" height="30" width="30"></td>
</tr>
<tr style="text-align:center;">
<td style="width:50px;">5</td>
<td style="width:50px;">4</td>
<td style="width:100px;">0.45</td>
<td style="width:100px;"><img src="../images/style/no.svg" alt="not" height="30" width="30"></td>
</tr>
<tr style="text-align:center;">
<td style="width:50px;">4</td>
<td style="width:50px;">5</td>
<td style="width:100px;">0.45</td>
<td style="width:100px;"><img src="../images/style/no.svg" alt="not" height="30" width="30"></td>
</tr>
<tr style="text-align:center;">
<td style="width:50px;">5</td>
<td style="width:50px;">5</td>
<td style="width:100px;">0.4</td>
<td style="width:100px;"><img src="../images/style/no.svg" alt="not" height="30" width="30"></td>
</tr>
<tr style="text-align:center;">
<td style="width:50px;">etc...</td>
<td style="width:50px;">...</td>
<td style="width:100px;">...</td>
<td style="width:100px;"><img src="../images/style/no.svg" alt="not" height="30" width="30"></td>
</tr>
</tbody></table><br>
</div> <b>Result</b>: There are only 5 that work! All the rest are just not possible in the real world.
<div class="example">
<h3>Example: <b>s=5</b>, <b>m=5</b></h3>
<p><b>1/s + 1/m</b> <b> 1/2 = 1/E</b> becomes</p>
<div class="so">1/5 + 1/5 1/2 = 1/E</div>
<div class="so">0.1 = 1/E </div>
<p>which makes E (number of edges) = 10, And we can't have a negative number of edges!</p>
</div>
<h2><br>
Real?</h2>
<p>And the last step is to see if those solids are real:</p>
<div class="beach">
<table style="border: 0; margin:auto;">
<tbody>
<tr style="text-align:center;">
<th width="50">s</th>
<th width="50">m</th>
<th width="250">what it means</th>
<th width="100">solid</th>
<th width="50">&nbsp;</th>
</tr>
<tr style="text-align:center;">
<td style="width:50px;">3</td>
<td style="width:50px;">3</td>
<td style="width:250px;">triangles meeting 3-at-a-corner</td>
<td style="width:100px;">tetrahedron</td>
<td style="width:50px;"><img src="images/poly-tetrahedron.svg" alt="Tetrahedron" height="94" width="90"></td>
</tr>
<tr style="text-align:center;">
<td style="width:50px;">3</td>
<td style="width:50px;">4</td>
<td style="width:250px;">triangles meeting 4-at-a-corner</td>
<td style="width:100px;">octahedron</td>
<td style="width:50px;"><img src="images/poly-octahedron.svg" alt="Octahedron" height="86" width="85"></td>
</tr>
<tr style="text-align:center;">
<td style="width:50px;">4</td>
<td style="width:50px;">3</td>
<td style="width:250px;">squares meeting 3-at-a-corner</td>
<td style="width:100px;">cube</td>
<td style="width:50px;"><img src="images/poly-cube.svg" alt="Cube" height="88" width="88"></td>
</tr>
<tr style="text-align:center;">
<td style="width:50px;">5</td>
<td style="width:50px;">3</td>
<td style="width:250px;">pentagons meeting 3-at-a-corner</td>
<td style="width:100px;"> dodecahedron</td>
<td style="width:50px;"><img src="images/poly-dodecahedron.svg" alt="Dodecahedron" height="93" width="93"></td>
</tr>
<tr style="text-align:center;">
<td style="width:50px;">3</td>
<td style="width:50px;">5</td>
<td style="width:250px;"> triangles meeting 5-at-a-corner</td>
<td style="width:100px;"> icosahedron </td>
<td style="width:50px;"><img src="images/poly-icosahedron.svg" alt="Icosahedron" height="94" width="81"></td>
</tr>
</tbody></table>
</div>
<p>So, only 5, and they all exist.</p>
<p><b>Job Done.</b></p>
<h2><br>
Schläfli !</h2>
<p>And just to keep you well educated ... the "s" and "m" values put together inside curly braces {} make what is called the "Schläfli symbol" for polyhedra:</p>
<div class="example">
<p>Examples:</p>
<ul>
<li>The Octahedron's Schläfli symbol is {3,4},</li>
<li>and the Icosahedron's is {3,5},</li>
</ul>
<p>can you work out the rest?</p>
</div>
<p>&nbsp;</p>
<div class="related">
<a href="../platonic_solids.html">Platonic Solids</a>
<a href="eulers-formula.html">Euler's Formula</a>
<a href="index.html">GeometryIndex</a>
</div>
<!-- #EndEditable -->
</article>
<div id="adend" class="centerfull noprint"></div>
<footer id="footer" class="centerfull noprint"></footer>
<div id="copyrt">Copyright © 2022 Rod Pierce</div>
</div>
</body><!-- #EndTemplate -->
<!-- Mirrored from www.mathsisfun.com/geometry/platonic-solids-why-five.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:59:04 GMT -->
</html>