Lucas Kent e39465ad2f Changes to be committed:
new file:   Files/flashplayer_32_sa.exe
	new file:   favicon.ico
	new file:   globe.gif
	new file:   imgs/download.png
	new file:   imgs/zuck.jpg
	new file:   index.html
	new file:   other.ico
	new file:   script.js
	new file:   site.webmanifest
	new file:   sitemap.html
	new file:   styles/backround.css
	new file:   styles/border.css
	new file:   styles/fonts/Titillium_Web/OFL.txt
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf
	new file:   styles/fonts/webfontkit-20221027-163353/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2
	new file:   styles/fonts/webfontkit-20221027-165950/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2
	new file:   styles/style.css
	new file:   tools/2048/.gitignore
	new file:   tools/2048/.jshintrc
	new file:   tools/2048/CONTRIBUTING.md
	new file:   tools/2048/LICENSE.txt
	new file:   tools/2048/README.md
	new file:   tools/2048/Rakefile
	new file:   tools/2048/favicon.ico
	new file:   tools/2048/index.html
	new file:   tools/2048/js/animframe_polyfill.js
	new file:   tools/2048/js/application.js
	new file:   tools/2048/js/bind_polyfill.js
	new file:   tools/2048/js/classlist_polyfill.js
	new file:   tools/2048/js/game_manager.js
	new file:   tools/2048/js/grid.js
	new file:   tools/2048/js/html_actuator.js
	new file:   tools/2048/js/keyboard_input_manager.js
	new file:   tools/2048/js/local_storage_manager.js
	new file:   tools/2048/js/tile.js
    new file:   tools/2048/meta/apple-touch-icon.png
	new file:   tools/webretro/cores/neocd_libretro.js
	new file:   tools/webretro/cores/neocd_libretro.wasm
	new file:   tools/webretro/cores/nestopia_libretro.js
	new file:   tools/webretro/cores/nestopia_libretro.wasm
	new file:   tools/webretro/cores/o2em_libretro.js
	new file:   tools/webretro/cores/o2em_libretro.wasm
	new file:   tools/webretro/cores/opera_libretro.js
	new file:   tools/webretro/cores/opera_libretro.wasm
2022-11-02 08:40:01 -04:00

202 lines
7.7 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html lang="en"><!-- #BeginTemplate "/Templates/Advanced.dwt" --><!-- DW6 -->
<!-- Mirrored from www.mathsisfun.com/data/covariance.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 01:09:57 GMT -->
<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
<!-- #BeginEditable "doctitle" -->
<title>Covariance</title>
<meta name="description" content="Math explained in easy language, plus puzzles, games, quizzes, videos and worksheets. For K-12 kids, teachers and parents.">
<script>reSpell=[["math","maths"]];</script>
<style>
.sig {display:inline-block; margin: -4% 0.6% 4% -1%; transform: translateX(20%) translateY(35%);}
.sig .to {text-align:center; width:2em; font: 0.8em Verdana; margin: 0 0 -12px 0;}
.sig .symb {font: 200% Georgia; transform: translateY(16%); }
.sig .symb:before { content: "\03A3";}
.sig .from {text-align:center; width:2em; font: 0.8em Verdana; overflow:visible; }
</style>
<!-- #EndEditable -->
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
<meta name="HandheldFriendly" content="true">
<meta name="referrer" content="always">
<link rel="preload" href="../images/style/font-champ-bold.ttf" as="font" type="font/ttf" crossorigin="">
<link rel="preload" href="../style4.css" as="style">
<link rel="preload" href="../main4.js" as="script">
<link rel="stylesheet" href="../style4.css">
<script src="../main4.js" defer="defer"></script>
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async="" src="https://www.googletagmanager.com/gtag/js?id=UA-29771508-1"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'UA-29771508-1');
</script>
</head>
<body id="bodybg" class="adv">
<div id="stt"></div>
<div id="adTop"></div>
<header>
<div id="hdr"></div>
<div id="tran"></div>
<div id="adHide"></div>
<div id="cookOK"></div>
</header>
<div class="mid">
<nav>
<div id="menuWide" class="menu"></div>
<div id="logo"><a href="../index.html"><img src="../images/style/logo-adv.svg" alt="Math is Fun Advanced"></a></div>
<div id="search" role="search"></div>
<div id="linkto"></div>
<div id="menuSlim" class="menu"></div>
<div id="menuTiny" class="menu"></div>
</nav>
<div id="extra"></div>
<article id="content" role="main">
<!-- #BeginEditable "Body" -->
<h1 class="center">Covariance</h1>
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/covariance-examples.svg" alt="Covariance examples"></p>
<p>Covariance is a single number we can calculate from a list of paired values.</p>
<p>It tells us if the paired values tend to rise together, or if one tends to rise as the other falls.</p>
<h2>The Calculations</h2>
<p>Imagine we have pairs of values (x,y), ..., we do these calculations:</p>
<ul>
<li>Find the mean of the x values</li>
<li>Find the mean of the y values</li></ul>
<p>Then for each pair of values:</p>
<ul>
<li>subtract the mean of x from the x value</li>
<li>subtract the mean of y from the y value</li>
<li>multiply those together</li></ul>
<p>And lastly:</p>
<ul>
<li>sum up all those multiplications</li>
<li>divide by n1 (where n is the total number of pairs)</li></ul>
<p>And we get the covariance.</p>
<h2>Example: Ice Cream Sales</h2>
<p>The local ice cream shop keeps track of how much ice cream they sell
versus the temperature on that day. Here are their figures for the last
few days: </p>
<table align="center" cellpadding="4" border="3">
<tbody>
<tr align="center">
<td colspan="2"><b><em>Ice Cream Sales vs Temperature</em><em></em></b></td>
</tr>
<tr align="center">
<th>Temperature °C</th>
<th>Ice Cream Sales</th>
</tr>
<tr align="center">
<td>14.2°</td>
<td>$215 </td>
</tr>
<tr align="center">
<td>16.4°</td>
<td> $325 </td>
</tr>
<tr align="center">
<td>15.2° </td>
<td>$332 </td>
</tr>
<tr align="center">
<td>22.6°</td>
<td> $445 </td>
</tr>
<tr align="center">
<td>17.2°</td>
<td>$408</td>
</tr>
</tbody></table><p>Find the mean of the x values (temperature) by adding them up and dividing by how many:</p>
<p class="center large">mean of x = <span class="intbl"><em>14.2 + 16.4 + 15.2 + 22.6 + 17.2</em><strong>5</strong></span> = 17.12</p>
<p>Find the mean of the y values (sales in dollars):</p>
<p class="center large">mean of y = <span class="intbl"><em>215 + 325 + 332 + 445 + 408</em><strong>5</strong></span> = 345</p>
<p>Then for each pair of values subtract mean of x from x, mean of y from y and multiply:</p>
<ul>
<li>(14.217.12)(215345) = 2.92 × 130 = 379.6</li>
<li>(16.417.12)(325345) = 0.72 × 20 = 14.4</li>
<li>(15.217.12)(332345) = 1.92 × 13 = 24.96</li>
<li>(22.617.12)(445345) = 5.48 × 100 = 548</li>
<li>(17.217.12)(408345) = 0.08 × 63 = 5.04</li></ul>
<p>Add those results up and divide by n1</p>
<div class="center larger"><span class="intbl"><em>379.6 + 14.4 +24.96 + 548 + 5.04</em><strong>(51)</strong></span> = 243</div>
<!-- 379.6+14.4+24.96+548+5.04/4 = 243 -->
<p>The answer is <b>positive</b>: that tells us the x and y values tend to rise <b>together</b>.</p>
<p>That is all it says. Not how strongly linked they are. Not how fast they rise or fall. Just that they tend to rise and fall together.</p>
<p>A <b>negative </b>result would say that x <b>rises </b>as y <b>falls </b>(and vice versa).</p>
<p>A <b>zero </b>result (rarely happens with statistical data) just means the covariance does not let us know if x and y rise or fall together.</p>
<div class="def">
<h3>Covariance:</h3>
<ul>
<li><b>positive </b>says they rise and fall together</li>
<li><b>negative </b>says that one rises as the other falls</li></ul></div>
<p><i>The size of the covariance is not important. Imagine we used cents instead of dollars: we would get much larger values but the data still has the same relationship.</i></p>
<p>Note: the covariance can also be useful in other calculations.</p>
<h2>Formula</h2>
<p>As a formula covariance is:</p>
<div class="center larger"><span class="intbl"><em>1</em><strong>n1</strong></span>
<div class="sig">
<div class="to">n</div>
<div class="symb"></div>
<div class="from">i=1</div>
</div> (x<sub>i</sub>x̄)(y<sub>i</sub>ȳ)</div>
<!-- 1/n-1 SIG{i=1,n} (x-x)(y-y) -->
<p>Where:</p>
<ul>
<li><b>n</b> = number of pairs</li>
<li><b>Σ</b> means sum up (see <a href="../algebra/sigma-notation.html">Sigma Notation</a>)</li>
<li><b>x<sub>i</sub></b> and <b>y<sub>i</sub></b> are each pair of x,y values</li>
<li><b></b> and <b></b> are the mean of x and mean of y</li></ul>
<h2>Upgrade to Correlation</h2>
<p><a href="correlation.html">Correlation</a> has a few more steps in its calculation but also gives the useful result of telling us how <b>well related</b> x and y are.</p>
<h2>Why n1 ?</h2>
<p>We divide by <b>n1</b> in the final step when our data is a sample (which it usually is) because we are unsure of the true population mean.</p>
<p>But if our data is the entire population then we should divide by <b>n</b> in the final step.</p>
<p><br></p>
<div class="related">
<a href="correlation.html">Correlation </a>
<a href="standard-deviation.html">Standard Deviation and Variance</a>
<a href="index.html">Data Index</a>
</div>
<!-- #EndEditable -->
</article>
<div id="adend" class="centerfull noprint"></div>
<footer id="footer" class="centerfull noprint"></footer>
<div id="copyrt">Copyright © 2021 MathsIsFun.com</div>
</div>
</body><!-- #EndTemplate -->
<!-- Mirrored from www.mathsisfun.com/data/covariance.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 01:09:57 GMT -->
</html>