lkarch.org/tools/mathisfun/www.mathsisfun.com/calculus/solids-revolution-shells.html
Lucas Kent e39465ad2f Changes to be committed:
new file:   Files/flashplayer_32_sa.exe
	new file:   favicon.ico
	new file:   globe.gif
	new file:   imgs/download.png
	new file:   imgs/zuck.jpg
	new file:   index.html
	new file:   other.ico
	new file:   script.js
	new file:   site.webmanifest
	new file:   sitemap.html
	new file:   styles/backround.css
	new file:   styles/border.css
	new file:   styles/fonts/Titillium_Web/OFL.txt
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf
	new file:   styles/fonts/webfontkit-20221027-163353/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2
	new file:   styles/fonts/webfontkit-20221027-165950/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2
	new file:   styles/style.css
	new file:   tools/2048/.gitignore
	new file:   tools/2048/.jshintrc
	new file:   tools/2048/CONTRIBUTING.md
	new file:   tools/2048/LICENSE.txt
	new file:   tools/2048/README.md
	new file:   tools/2048/Rakefile
	new file:   tools/2048/favicon.ico
	new file:   tools/2048/index.html
	new file:   tools/2048/js/animframe_polyfill.js
	new file:   tools/2048/js/application.js
	new file:   tools/2048/js/bind_polyfill.js
	new file:   tools/2048/js/classlist_polyfill.js
	new file:   tools/2048/js/game_manager.js
	new file:   tools/2048/js/grid.js
	new file:   tools/2048/js/html_actuator.js
	new file:   tools/2048/js/keyboard_input_manager.js
	new file:   tools/2048/js/local_storage_manager.js
	new file:   tools/2048/js/tile.js
    new file:   tools/2048/meta/apple-touch-icon.png
	new file:   tools/webretro/cores/neocd_libretro.js
	new file:   tools/webretro/cores/neocd_libretro.wasm
	new file:   tools/webretro/cores/nestopia_libretro.js
	new file:   tools/webretro/cores/nestopia_libretro.wasm
	new file:   tools/webretro/cores/o2em_libretro.js
	new file:   tools/webretro/cores/o2em_libretro.wasm
	new file:   tools/webretro/cores/opera_libretro.js
	new file:   tools/webretro/cores/opera_libretro.wasm
2022-11-02 08:40:01 -04:00

282 lines
15 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html lang="en"><!-- #BeginTemplate "/Templates/Advanced.dwt" --><!-- DW6 -->
<!-- Mirrored from www.mathsisfun.com/calculus/solids-revolution-shells.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:49:19 GMT -->
<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
<!-- #BeginEditable "doctitle" -->
<title>Solids of Revolution by Shells</title>
<meta name="description" content="Math explained in easy language, plus puzzles, games, quizzes, videos and worksheets. For K-12 kids, teachers and parents.">
<script language="JavaScript" type="text/javascript">reSpell=[["center","centre"]];</script>
<style>
.intgl {display:inline-block; margin: -4% 0.6% 4% -1.8%; transform: translateX(20%) translateY(35%);}
.intgl .to {text-align:center; width:2em; font: 0.8em Verdana; margin: 0 0 -5px 8px;}
.intgl .symb {font: 180% Georgia; }
.intgl .symb:before { content: "\222B";}
.intgl .from {text-align:center; width:2em; font: 0.8em Verdana; overflow:visible; }
.sigma {display:inline-block; margin: -4% 0.6% 4% -1%; transform: translateX(20%) translateY(35%);}
.sigma .to {text-align:center; width:2em; font: 0.8em Verdana; margin: 0 0 -12px 0;}
.sigma .symb {font: 200% Georgia; transform: translateY(16%); }
.sigma .symb:before { content: "\03A3";}
.sigma .from {text-align:center; width:2em; font: 0.8em Verdana; overflow:visible; }
</style>
<!-- #EndEditable -->
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
<meta name="HandheldFriendly" content="true">
<meta name="referrer" content="always">
<link rel="preload" href="../images/style/font-champ-bold.ttf" as="font" type="font/ttf" crossorigin="">
<link rel="preload" href="../style4.css" as="style">
<link rel="preload" href="../main4.js" as="script">
<link rel="stylesheet" href="../style4.css">
<script src="../main4.js" defer="defer"></script>
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async="" src="https://www.googletagmanager.com/gtag/js?id=UA-29771508-1"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'UA-29771508-1');
</script>
</head>
<body id="bodybg" class="adv">
<div id="stt"></div>
<div id="adTop"></div>
<header>
<div id="hdr"></div>
<div id="tran"></div>
<div id="adHide"></div>
<div id="cookOK"></div>
</header>
<div class="mid">
<nav>
<div id="menuWide" class="menu"></div>
<div id="logo"><a href="../index.html"><img src="../images/style/logo-adv.svg" alt="Math is Fun Advanced"></a></div>
<div id="search" role="search"></div>
<div id="linkto"></div>
<div id="menuSlim" class="menu"></div>
<div id="menuTiny" class="menu"></div>
</nav>
<div id="extra"></div>
<article id="content" role="main">
<!-- #BeginEditable "Body" -->
<h1 class="center">Solids of Revolution by Shells</h1>
<p class="center"><img src="images/tree-rings.jpg" alt="Tree Rings are like Shells" height="170" width="500"></p>
<p>We can have a function, like this one:</p>
<p class="center"><img src="images/solid-shell-1.svg" alt="Solids of Revolution y=f(x)" height="145" width="196"></p>
<p>And revolve it around the y-axis to get a solid like this:</p>
<p class="center"><img src="images/solid-shell-2.svg" alt="Solids of Revolution y=f(x)" height="155" width="202"></p>
<p>Now, to find its <b>volume</b> we can <b>add up "shells"</b>:</p>
<p class="center"><img src="images/solid-shell-3.svg" alt="Solids of Revolution y=f(x)" height="164" width="201"></p>
<p>Each shell has the curved surface area of a <a href="../geometry/cylinder.html">cylinder</a> whose area is <b>2<span class="times">π</span>r</b> times its height:</p>
<p class="center large"><img src="images/solid-shell-4.svg" alt="Solids of Revolution y=f(x)" height="164" width="201"><br>
A = 2<span class="times">π</span>(radius)(height)</p>
<p>And the <b>volume</b> is found by summing all those shells using <a href="integration-introduction.html">Integration</a>:</p>
<div class="center larger">Volume =
<div class="intgl">
<div class="to">b</div>
<div class="symb"></div>
<div class="from">a</div>
</div>2<span class="times">π</span>(radius)(height) dx</div>
<!-- Volume = INT{a, b} 2 PI (radius)(height) dx -->
<p class="center">That is our formula for <b>Solids of Revolution by Shells</b></p>
<p>These are the steps:</p>
<ul>
<li>sketch the volume and how a typical shell fits inside it</li>
<li>integrate <b>2<span class="times">π</span></b> times the <b>shell's radius</b> times the <b>shell's height</b>,</li>
<li>put in the values for b and a, subtract, and you are done.</li>
</ul>
<p>As in this example:</p>
<div class="example">
<h3>Example: A Cone!</h3>
<p>Take the simple function <b>y = b x</b> between x=0 and x=b</p>
<p class="center"><img src="images/solid-shell-cone-1.svg" alt="Solids of Revolution y=f(x)" height="123" width="185"></p>
<p>Rotate it around the y-axis ... and we have a cone!</p>
<p class="center"><img src="images/solid-shell-cone-2.svg" alt="Solids of Revolution y=f(x)" height="123" width="185"></p>
<p>Now let us imagine a shell inside:</p>
<p class="center"><img src="images/solid-shell-cone-3.svg" alt="Solids of Revolution y=f(x)" height="123" width="185"></p>
<p>What is the shell's radius? It is simply <b>x</b><br>
What is the shell's height? It is <b>bx</b></p>
<p>What is the volume? <b>Integrate 2<span class="times">π</span> times x times (bx)</b> :</p>
<div class="center large">Volume =
<div class="intgl">
<div class="to">b</div>
<div class="symb"></div>
<div class="from">0</div>
</div>2<span class="times">π</span> x(bx) dx</div>
<!-- Volume = INT{0, b} 2 PI x(b&minus;x) dx -->
<p style="float:left; margin: 0 10px 5px 0;"><img src="images/pie-outside.jpg" alt="pie outside" height="93" width="150"></p>
<p>Now, let's have our <b>pi outside</b> (yum).</p>
<p>Seriously, we can bring a constant like 2<span class="times">π</span> outside the integral:</p>
<div style="clear:both"></div>
<div class="center large">Volume = 2<span class="times">π</span>
<div class="intgl">
<div class="to">b</div>
<div class="symb"></div>
<div class="from">0</div>
</div>x(bx) dx</div>
<!-- Volume = 2PI INT{0, b} x(b&minus;x) dx -->
<p>Expand x(bx) to bx x<sup>2</sup>:</p>
<div class="center large">Volume = 2<span class="times">π</span>
<div class="intgl">
<div class="to">b</div>
<div class="symb"></div>
<div class="from">0</div>
</div>(bxx<sup>2</sup>) dx</div>
<!-- Volume = 2PI INT{0, b} (bx&minus;x^2 ) dx -->
<p>Using <a href="integration-rules.html">Integration Rules</a> we find the integral of bx x<sup>2</sup> is:</p>
<p class="center large"><span class="intbl"><em>bx<sup>2</sup></em><strong>2</strong></span> <span class="intbl"><em>x<sup>3</sup></em><strong>3</strong></span> + C</p>
<p>To calculate the <a href="integration-definite.html">definite integral</a> between 0 and b, we calculate the value of the function for <b>b</b> and for <b>0</b>&nbsp;and subtract, like this:</p>
<div class="tbl">
<div class="row"><span class="lt">Volume =</span><span class="rtlt">2<span class="times">π</span>(<span class="intbl"><em>b(b)<sup>2</sup></em><strong>2</strong></span> <span class="intbl"><em>b<sup>3</sup></em><strong>3</strong></span>) 2<span class="times">π</span>(<span class="intbl"><em>b(0)<sup>2</sup></em><strong>2</strong></span> <span class="intbl"><em>0<sup>3</sup></em><strong>3</strong></span>)</span></div>
<div class="row"><span class="lt">=</span><span class="rtlt">2<span class="times">π</span>(<span class="intbl"><em>b<sup>3</sup></em><strong>2</strong></span> <span class="intbl"><em>b<sup>3</sup></em><strong>3</strong></span>)</span></div>
<div class="row"><span class="lt">=</span><span class="rtlt">2<span class="times">π</span>(<span class="intbl"><em>b<sup>3</sup></em><strong>6</strong></span>) &nbsp; because <span class="intbl"><em>1</em><strong>2</strong></span> <span class="intbl"><em>1</em><strong>3</strong></span> = <span class="intbl"><em>1</em><strong>6</strong></span></span></div>
<div class="row"><span class="lt">=</span><span class="rtlt"><span class="times">π</span><span class="intbl"><em>b<sup>3</sup></em><strong>3</strong></span></span></div>
</div>
</div>
<div class="fun">Compare that result with the more general volume of a <a href="../geometry/cone.html">cone</a>:
<p class="center"><span class="large">Volume = <span class="intbl">
<em>1</em>
<strong>3</strong>
</span> <span class="times"> π</span> r<sup>2</sup> h</span></p>
<p>When both <b>r=b</b> and <b>h=b</b> we get:</p>
<p class="center"><span class="large">Volume = <span class="intbl">
<em>1</em>
<strong>3</strong>
</span> <span class="times"> π</span> b<sup>3</sup></span></p>
<p>As an interesting exercise, why not try to work out the more general case of any value of r and h yourself?</p></div>
<p>&nbsp;</p>
<p>We can also rotate about other values, such as x = 4</p>
<div class="example">
<h3>Example: y=x, but rotated around x = 4, and only from x=0 to x=3</h3>
<p>So we have this:</p>
<p class="center"><img src="images/solid-shell-conem1-1.svg" alt="Solids of Revolution y=f(x)" height="121" width="179"></p>
<p>Rotated about x = 4 it looks like this:</p>
<p class="center"><img src="images/solid-shell-conem1-2.svg" alt="Solids of Revolution y=f(x)" height="125" width="179"><br>
It is a cone, but with a hole down the center</p>
<p>Let's draw in a sample shell so we can work out what to do:</p>
<p class="center"><img src="images/solid-shell-conem1-3.svg" alt="Solids of Revolution y=f(x)" height="116" width="189"></p>
<p>What is the shell's radius? It is <b>4x</b> &nbsp; <i>(not just x, as we are rotating around x=4)</i><br>
What is the shell's height? It is <b>x</b></p>
<p>What is the volume? <b>Integrate 2<span class="times">π</span> times (4x) times x</b> :</p>
<div class="center large">Volume =
<div class="intgl">
<div class="to">3</div>
<div class="symb"></div>
<div class="from">0</div>
</div>2<span class="times">π</span>(4x)x dx</div>
<!-- Volume = INT{0, 3} 2PI(4&minus;x)x dx -->
<p><b>2<span class="times">π</span> outside</b>, and expand <b>(4x)x</b> to <b>4x x<sup>2</sup></b> :</p>
<div class="center large">Volume = 2<span class="times">π</span>
<div class="intgl">
<div class="to">3</div>
<div class="symb"></div>
<div class="from">0</div>
</div>(4xx<sup>2</sup>) dx</div>
<!-- Volume = 2PI INT{0, 3} (4x&minus;x^2) dx -->
<p>Using <a href="integration-rules.html">Integration Rules</a> we find the integral of 4x x<sup>2</sup> is:</p>
<p class="center large"><span class="intbl"><em>4x<sup>2</sup></em><strong>2</strong></span> <span class="intbl"><em>x<sup>3</sup></em><strong>3</strong></span> + C</p>
<p>And going between <b>0</b> and <b>3</b> we get:</p>
<p class="center large">Volume = 2<span class="times">π</span>(<span class="intbl"><em>4(3)<sup>2</sup></em><strong>2</strong></span> <span class="intbl"><em>3<sup>3</sup></em><strong>3</strong></span>) 2<span class="times">π</span>(<span class="intbl"><em>4(0)<sup>2</sup></em><strong>2</strong></span> <span class="intbl"><em>0<sup>3</sup></em><strong>3</strong></span>)</p>
<p class="center large">= 2<span class="times">π</span>(189)</p>
<p class="center larger">= 18<span class="times">π</span></p>
</div>
<p>We can have more complex situations:</p>
<div class="example">
<h3>Example: From y=x down to y=x<sup>2</sup></h3>
<p class="center"><img src="images/solid-shell-d-1.svg" alt="Solids of Revolution about Y" height="183" width="237"></p>
<p>Rotate around the y-axis:</p>
<p class="center"><img src="images/solid-shell-d-2.svg" alt="Solids of Revolution about Y" height="183" width="237"></p>
<p>Let's draw in a sample shell:</p>
<p class="center"><img src="images/solid-shell-d-3.svg" alt="Solids of Revolution about Y" height="183" width="237"></p>
<p>What is the shell's radius? It is simply <b>x</b><br>
What is the shell's height? It is <b>x x<sup>2</sup></b></p>
<p>Now <b>integrate 2<span class="times">π</span> times x times x x<sup>2</sup></b>:</p>
<div class="center large">Volume =
<div class="intgl">
<div class="to">b</div>
<div class="symb"></div>
<div class="from">a</div>
</div>2<span class="times">π</span> x(x x<sup>2</sup>) dx</div>
<!-- Volume = INT{a, b} 2PI x(x &minus; x^2) dx -->
<p>Put 2<span class="times">π</span> outside, and expand x(xx<sup>2</sup>) into x<sup>2</sup>x<sup>3</sup> :</p>
<div class="center large">Volume = 2<span class="times">π</span>
<div class="intgl">
<div class="to">b</div>
<div class="symb"></div>
<div class="from">a</div>
</div>(x<sup>2</sup> x<sup>3</sup>) dx</div>
<!-- Volume = 2PI INT{a, b} (x^2 &minus; x^3 ) dx -->
<p>The integral of x<sup>2</sup> x<sup>3</sup> is <b><span class="intbl"><em>x<sup>3</sup></em><strong>3</strong></span> <span class="intbl"><em>x<sup>4</sup></em><strong>4</strong></span></b></p>
<p>Now calculate the volume between a and b ... but what<i> is</i> a and b? a is 0, and b is where x crosses x<sup>2</sup>, which is 1</p>
<div class="tbl">
<div class="row"><span class="lt">Volume =</span><span class="rtlt">2<span class="times">π</span> ( <span class="intbl"><em>1<sup>3</sup></em><strong>3</strong></span> <span class="intbl"><em>1<sup>4</sup></em><strong>4</strong></span> ) 2<span class="times">π</span> ( <span class="intbl"><em>0<sup>3</sup></em><strong>3</strong></span> <span class="intbl"><em>0<sup>4</sup></em><strong>4</strong></span> )</span></div>
<div class="row"><span class="lt">=</span><span class="rtlt">2<span class="times">π</span> (<span class="intbl"><em>1</em><strong>12</strong></span>)</span></div>
<div class="row"><span class="lt">=</span><span class="rtlt"><span class="intbl"><em><span class="times">π</span></em><strong>6</strong></span></span></div>
</div>
</div>
<h2>In summary:</h2>
<ul>
<li>Draw the shell so you know what is going on</li>
<li><b>2<span class="times">π</span></b> outside the integral</li>
<li>Integrate the <b>shell's radius</b> times the <b>shell's height</b>,</li>
<li>Subtract the lower end from the higher end</li>
</ul>
<p>&nbsp;</p>
<div class="related">
<a href="solids-revolution-disk-washer.html">Solids of Revolution by Disks and Washers</a>
<a href="index.html">Calculus Index</a>
</div>
<!-- #EndEditable -->
</article>
<div id="adend" class="centerfull noprint"></div>
<footer id="footer" class="centerfull noprint"></footer>
<div id="copyrt">Copyright © 2021 MathsIsFun.com</div>
</div>
</body><!-- #EndTemplate -->
<!-- Mirrored from www.mathsisfun.com/calculus/solids-revolution-shells.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:49:22 GMT -->
</html>