new file: Files/flashplayer_32_sa.exe new file: favicon.ico new file: globe.gif new file: imgs/download.png new file: imgs/zuck.jpg new file: index.html new file: other.ico new file: script.js new file: site.webmanifest new file: sitemap.html new file: styles/backround.css new file: styles/border.css new file: styles/fonts/Titillium_Web/OFL.txt new file: styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf new file: styles/fonts/webfontkit-20221027-163353/generator_config.txt new file: styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css new file: styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css new file: styles/fonts/webfontkit-20221027-163353/stylesheet.css new file: styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html new file: styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff new file: styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2 new file: styles/fonts/webfontkit-20221027-165950/generator_config.txt new file: styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css new file: styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css new file: styles/fonts/webfontkit-20221027-165950/stylesheet.css new file: styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html new file: styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff new file: styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2 new file: styles/style.css new file: tools/2048/.gitignore new file: tools/2048/.jshintrc new file: tools/2048/CONTRIBUTING.md new file: tools/2048/LICENSE.txt new file: tools/2048/README.md new file: tools/2048/Rakefile new file: tools/2048/favicon.ico new file: tools/2048/index.html new file: tools/2048/js/animframe_polyfill.js new file: tools/2048/js/application.js new file: tools/2048/js/bind_polyfill.js new file: tools/2048/js/classlist_polyfill.js new file: tools/2048/js/game_manager.js new file: tools/2048/js/grid.js new file: tools/2048/js/html_actuator.js new file: tools/2048/js/keyboard_input_manager.js new file: tools/2048/js/local_storage_manager.js new file: tools/2048/js/tile.js new file: tools/2048/meta/apple-touch-icon.png new file: tools/webretro/cores/neocd_libretro.js new file: tools/webretro/cores/neocd_libretro.wasm new file: tools/webretro/cores/nestopia_libretro.js new file: tools/webretro/cores/nestopia_libretro.wasm new file: tools/webretro/cores/o2em_libretro.js new file: tools/webretro/cores/o2em_libretro.wasm new file: tools/webretro/cores/opera_libretro.js new file: tools/webretro/cores/opera_libretro.wasm
209 lines
11 KiB
HTML
209 lines
11 KiB
HTML
<!DOCTYPE html>
|
||
<html lang="en"><!-- #BeginTemplate "/Templates/Advanced.dwt" --><!-- DW6 -->
|
||
|
||
<!-- Mirrored from www.mathsisfun.com/calculus/l-hopitals-rule.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:48:57 GMT -->
|
||
<head>
|
||
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
|
||
|
||
<!-- #BeginEditable "doctitle" -->
|
||
<title>L'Hopital's Rule</title>
|
||
<meta name="description" content="Math explained in easy language, plus puzzles, games, quizzes, videos and worksheets. For K-12 kids, teachers and parents.">
|
||
<style>
|
||
.lim {
|
||
display: inline-table;
|
||
text-align: center;
|
||
vertical-align: middle;
|
||
margin: 0 4px 0 2px;
|
||
border-collapse: collapse;
|
||
}
|
||
.lim em {
|
||
display: table-row;
|
||
text-align: center;
|
||
font-style: inherit;
|
||
}
|
||
.lim strong {
|
||
display: table-row;
|
||
text-align: center;
|
||
font-weight: inherit;
|
||
font-size: 80%;
|
||
line-height: 9px;
|
||
}
|
||
</style>
|
||
<!-- #EndEditable -->
|
||
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
|
||
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
|
||
<meta name="HandheldFriendly" content="true">
|
||
<meta name="referrer" content="always">
|
||
<link rel="preload" href="../images/style/font-champ-bold.ttf" as="font" type="font/ttf" crossorigin="">
|
||
<link rel="preload" href="../style4.css" as="style">
|
||
<link rel="preload" href="../main4.js" as="script">
|
||
<link rel="stylesheet" href="../style4.css">
|
||
<script src="../main4.js" defer="defer"></script>
|
||
<!-- Global site tag (gtag.js) - Google Analytics -->
|
||
<script async="" src="https://www.googletagmanager.com/gtag/js?id=UA-29771508-1"></script>
|
||
<script>
|
||
window.dataLayer = window.dataLayer || [];
|
||
function gtag(){dataLayer.push(arguments);}
|
||
gtag('js', new Date());
|
||
gtag('config', 'UA-29771508-1');
|
||
</script>
|
||
</head>
|
||
|
||
<body id="bodybg" class="adv">
|
||
|
||
<div id="stt"></div>
|
||
<div id="adTop"></div>
|
||
<header>
|
||
<div id="hdr"></div>
|
||
<div id="tran"></div>
|
||
<div id="adHide"></div>
|
||
<div id="cookOK"></div>
|
||
</header>
|
||
|
||
<div class="mid">
|
||
|
||
<nav>
|
||
<div id="menuWide" class="menu"></div>
|
||
<div id="logo"><a href="../index.html"><img src="../images/style/logo-adv.svg" alt="Math is Fun Advanced"></a></div>
|
||
|
||
<div id="search" role="search"></div>
|
||
<div id="linkto"></div>
|
||
|
||
<div id="menuSlim" class="menu"></div>
|
||
<div id="menuTiny" class="menu"></div>
|
||
</nav>
|
||
|
||
<div id="extra"></div>
|
||
|
||
<article id="content" role="main">
|
||
|
||
<!-- #BeginEditable "Body" -->
|
||
|
||
<h1 class="center">L'Hôpital's Rule</h1>
|
||
|
||
<p><span class="center">L'Hôpital's Rule</span> can help us calculate a <a href="limits.html">limit</a> that may otherwise be hard or impossible.</p>
|
||
<div class="words">
|
||
<p><span class="center">L'Hôpital is pronounced "lopital"</span>. He was a French mathematician from the 1600s.</p>
|
||
</div>
|
||
<p> </p>
|
||
<p>It says that the <b>limit</b> when we divide one function by another is the same after we take the <a href="derivatives-introduction.html">derivative</a> of each function (with some special conditions shown later).</p>
|
||
<p>In symbols we can write:</p>
|
||
<p class="center large"><span class="lim"><em>lim</em><strong>x→c</strong></span><span class="intbl"><em>f(x)</em><strong>g(x)</strong></span> = <span class="lim"><em>lim</em><strong>x→c</strong></span><span class="intbl"><em>f’(x)</em><strong>g’(x)</strong></span></p>
|
||
<!-- limx->c f(x)/g(x) = limx->c f'(x)/g'(x) -->
|
||
|
||
<p class="center"><i>The limit as x approaches c of "f-of−x over g-of−x" equals the<br>
|
||
the limit as x approaches c of "f-dash-of−x over g-dash-of−x"</i></p>
|
||
<p>All we did is add that little dash mark <span class="hilite"> ’ </span> on each function, which means to take the derivative.</p>
|
||
<div class="example">
|
||
<h3>Example:
|
||
|
||
|
||
|
||
|
||
<div class="center large"><span class="lim"><em>lim</em><strong>x→2</strong></span><span class="intbl"><em>x<sup>2</sup>+x−6</em><strong>x<sup>2</sup>−4</strong></span></div>
|
||
<!-- limx->2 x^2~+x−6/x^2~−4 --></h3>
|
||
<p>At <b>x=2</b> we would normally get:</p>
|
||
<p class="center large"><span class="intbl"><em>2<sup>2</sup>+2−6</em><strong>2<sup>2</sup>−4</strong></span> = <span class="intbl"><em>0</em><strong>0</strong></span></p>
|
||
<!---− 2^2~+2−6/2^2~−4 = 0/0 ---->
|
||
|
||
<p>Which is <a href="../numbers/dividing-by-zero.html">indeterminate</a>, so we are stuck. Or are we?</p>
|
||
<p>Let's try <span class="center">L'Hôpita</span>l!</p>
|
||
<p>Differentiate both top and bottom (see <a href="derivatives-rules.html">Derivative Rules</a>):</p>
|
||
<p class="center large"><span class="lim"><em>lim</em><strong>x→2</strong></span><span class="intbl"><em>x<sup>2</sup>+x−6</em><strong>x<sup>2</sup>−4</strong></span> = <span class="lim"><em>lim</em><strong>x→2</strong></span><span class="intbl"><em>2x+1−0</em><strong>2x−0</strong></span></p>
|
||
<!-- limx->2 x^2~+x−6/x^2~−4 = limx->2 2x+1-0/2x-0 -->
|
||
<p>Now we just substitute <b>x=2</b> to get our answer:</p>
|
||
<p class="center large"><span class="lim"><em>lim</em><strong>x→2</strong></span><span class="intbl"><em>2x+1−0</em><strong>2x−0</strong></span> = <span class="intbl"><em>5</em><strong>4</strong></span></p>
|
||
<!-- limx->2 2x+1-0/2x-0 = 5/4 -->
|
||
<p>Here is the graph, notice the "hole" at x=2:</p>
|
||
<p class="center"><img src="images/x2pxm6etc.svg" alt="(x^2+x-6)/(x^2-4)" height="330" width="570"></p>
|
||
|
||
<p><i>Note: we can also get this answer by factoring, see <a href="limits-evaluating.html">Evaluating Limits</a></i>.</p>
|
||
</div>
|
||
<!-- limx->2 x^2~+x−6/x^2~−4 = limx->2 2x+1-0/2x-0 = 5/4 -->
|
||
<div class="example">
|
||
<h3>Example:
|
||
|
||
|
||
|
||
|
||
<div class="center large"><span class="lim"><em>lim</em><strong>x→∞</strong></span><span class="intbl"><em>e<sup>x</sup></em><strong>x<sup>2</sup></strong></span></div>
|
||
<!-- limx->INF e^x/x^2 --></h3>
|
||
<p>Normally this is the result:</p>
|
||
<p class="center large"><span class="lim"><em>lim</em><strong>x→∞</strong></span><span class="intbl"><em>e<sup>x</sup></em><strong>x<sup>2</sup></strong></span> = <span class="intbl"><em>∞</em><strong>∞</strong></span></p>
|
||
<!-- limx->INF e^x/x^2 = INF/INF -->
|
||
<p>Both head to infinity. Which is indeterminate.</p>
|
||
<p>But let's differentiate both top and bottom (note that the derivative of e<sup>x</sup> is e<sup>x</sup>):</p>
|
||
<p class="center large"><span class="lim"><em>lim</em><strong>x→∞</strong></span><span class="intbl"><em>e<sup>x</sup></em><strong>x<sup>2</sup></strong></span> = <span class="lim"><em>lim</em><strong>x→∞</strong></span><span class="intbl"><em>e<sup>x</sup></em><strong>2x</strong></span></p>
|
||
<!-- limx->INF e^x/x^2 = limx->INF e^x/2x -->
|
||
<p>Hmmm, still not solved, both tending towards infinity. But we can use it again:</p>
|
||
<p class="center large"><span class="lim"><em>lim</em><strong>x→∞</strong></span><span class="intbl"><em>e<sup>x</sup></em><strong>x<sup>2</sup></strong></span> = <span class="lim"><em>lim</em><strong>x→∞</strong></span><span class="intbl"><em>e<sup>x</sup></em><strong>2x</strong></span> = <span class="lim"><em>lim</em><strong>x→∞</strong></span><span class="intbl"><em>e<sup>x</sup></em><strong>2</strong></span></p>
|
||
<p><!-- limx->INF e^x/x^2 = limx->INF e^x/2x = limx->INF e^x/2 -->
|
||
Now we have:</p>
|
||
<p class="center large"><span class="lim"><em>lim</em><strong>x→∞</strong></span><span class="intbl"><em>e<sup>x</sup></em><strong>2</strong></span> = ∞</p>
|
||
<!-- limx->INF e^x/2 = INF/0 = INF -->
|
||
<p>It has shown us that e<sup>x</sup> grows much faster than x<sup>2</sup>.</p>
|
||
</div>
|
||
<h2>Cases</h2>
|
||
<p>We have already seen a <span class="intbl"><em>0</em><strong>0</strong></span> and <span class="intbl"><em>∞</em><strong>∞</strong></span> example. Here are all the indeterminate forms that <span class="center">L'Hopital's Rule</span> may be able to help with:</p>
|
||
<p class="center large"><span class="intbl"><em>0</em><strong>0</strong></span> <span class="intbl"><em>∞</em><strong>∞</strong></span> 0×∞ 1<sup>∞</sup> 0<sup>0</sup> ∞<sup>0</sup> ∞−∞</p>
|
||
<!-- 0/0 INF/INF 0*INF 1^INF 0^0 INF^0 INF-INF -->
|
||
|
||
|
||
<h2 id="cond">Conditions</h2>
|
||
<h3>Differentiable</h3>
|
||
<p>For a limit approaching c, the original functions must be differentiable either side of c, but not necessarily at c.</p>
|
||
<p>Likewise g’(x) is not equal to zero either side of c.</p>
|
||
<h3>The Limit Must Exist</h3>
|
||
This limit must exist:
|
||
|
||
|
||
|
||
|
||
<p class="center large"><span class="lim"><em>lim</em><strong>x→c</strong></span><span class="intbl"><em>f’(x)</em><strong>g’(x)</strong></span></p>
|
||
<!-- limx->c f'(x)/g'(x) -->
|
||
<p>Why? Well a good example is functions that never settle to a value.</p>
|
||
<div class="example">
|
||
<h3>Example:
|
||
|
||
|
||
|
||
|
||
<div class="center large"><span class="lim"><em>lim</em><strong>x→∞</strong></span><span class="intbl"><em>x+cos(x)</em><strong>x</strong></span></div>
|
||
<!-- limx->INF x+cos(x)/x --></h3>
|
||
<p>Which is a <span class="intbl"><em>∞</em><strong>∞</strong></span> case. Let's differentiate top and bottom:</p>
|
||
<p class="center large"><span class="lim"><em>lim</em><strong>x→∞</strong></span><span class="intbl"><em>1−sin(x)</em><strong>1</strong></span></p>
|
||
<!-- limx->INF 1-sin(x)/1 -->
|
||
<p>And because it just wiggles up and down it never approaches any value.</p>
|
||
<p>So that new limit does not exist!</p>
|
||
<p><b>And so <span class="center">L'Hôpita</span>l's Rule is not usable in this case.</b></p>
|
||
<p>BUT we can do this:</p>
|
||
<p class="center large"><span class="lim"><em>lim</em><strong>x→∞</strong></span><span class="intbl"><em>x+cos(x)</em><strong>x</strong></span> = <span class="lim"><em>lim</em><strong>x→∞</strong></span>(1 + <span class="intbl"><em>cos(x)</em><strong>x</strong></span>)</p>
|
||
<!-- limx->INF x+cos(x)/x = limx->INF (1 + cos(x)/x ) = 1 -->
|
||
<p>As x goes to infinity then <span class="intbl"><em>cos(x)</em><strong>x</strong></span> tends to between <span class="intbl"><em>−1</em><strong>∞</strong></span> and <span class="intbl"><em>+1</em><strong>∞</strong></span>, and both tend to zero.</p>
|
||
<p>And we are left with just the "1", so:</p>
|
||
|
||
<p class="center large"><span class="lim"><em>lim</em><strong>x→∞</strong></span><span class="intbl"><em>x+cos(x)</em><strong>x</strong></span> = <span class="lim"><em>lim</em><strong>x→∞</strong></span>(1 + <span class="intbl"><em>cos(x)</em><strong>x</strong></span>) = 1</p>
|
||
<!-- limx->INF x+cos(x)/x = limx->INF (1 + cos(x)/x ) = 1 -->
|
||
|
||
</div>
|
||
<p> </p>
|
||
|
||
<div class="related">
|
||
<a href="limits.html">Limits (An Introduction)</a>
|
||
<a href="index.html">Calculus Index</a>
|
||
</div>
|
||
<!-- #EndEditable -->
|
||
|
||
</article>
|
||
|
||
<div id="adend" class="centerfull noprint"></div>
|
||
<footer id="footer" class="centerfull noprint"></footer>
|
||
<div id="copyrt">Copyright © 2021 MathsIsFun.com</div>
|
||
|
||
</div>
|
||
|
||
|
||
|
||
</body><!-- #EndTemplate -->
|
||
<!-- Mirrored from www.mathsisfun.com/calculus/l-hopitals-rule.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:48:57 GMT -->
|
||
</html> |