Lucas Kent e39465ad2f Changes to be committed:
new file:   Files/flashplayer_32_sa.exe
	new file:   favicon.ico
	new file:   globe.gif
	new file:   imgs/download.png
	new file:   imgs/zuck.jpg
	new file:   index.html
	new file:   other.ico
	new file:   script.js
	new file:   site.webmanifest
	new file:   sitemap.html
	new file:   styles/backround.css
	new file:   styles/border.css
	new file:   styles/fonts/Titillium_Web/OFL.txt
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf
	new file:   styles/fonts/webfontkit-20221027-163353/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2
	new file:   styles/fonts/webfontkit-20221027-165950/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2
	new file:   styles/style.css
	new file:   tools/2048/.gitignore
	new file:   tools/2048/.jshintrc
	new file:   tools/2048/CONTRIBUTING.md
	new file:   tools/2048/LICENSE.txt
	new file:   tools/2048/README.md
	new file:   tools/2048/Rakefile
	new file:   tools/2048/favicon.ico
	new file:   tools/2048/index.html
	new file:   tools/2048/js/animframe_polyfill.js
	new file:   tools/2048/js/application.js
	new file:   tools/2048/js/bind_polyfill.js
	new file:   tools/2048/js/classlist_polyfill.js
	new file:   tools/2048/js/game_manager.js
	new file:   tools/2048/js/grid.js
	new file:   tools/2048/js/html_actuator.js
	new file:   tools/2048/js/keyboard_input_manager.js
	new file:   tools/2048/js/local_storage_manager.js
	new file:   tools/2048/js/tile.js
    new file:   tools/2048/meta/apple-touch-icon.png
	new file:   tools/webretro/cores/neocd_libretro.js
	new file:   tools/webretro/cores/neocd_libretro.wasm
	new file:   tools/webretro/cores/nestopia_libretro.js
	new file:   tools/webretro/cores/nestopia_libretro.wasm
	new file:   tools/webretro/cores/o2em_libretro.js
	new file:   tools/webretro/cores/o2em_libretro.wasm
	new file:   tools/webretro/cores/opera_libretro.js
	new file:   tools/webretro/cores/opera_libretro.wasm
2022-11-02 08:40:01 -04:00

525 lines
26 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html lang="en"><!-- #BeginTemplate "/Templates/Advanced.dwt" --><!-- DW6 -->
<!-- Mirrored from www.mathsisfun.com/calculus/fourier-series.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:32:14 GMT -->
<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
<!-- #BeginEditable "doctitle" -->
<title>Fourier Series</title>
<meta name="description" content="Math explained in easy language, plus puzzles, games, quizzes, videos and worksheets. For K-12 kids, teachers and parents.">
<!-- #EndEditable -->
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
<meta name="HandheldFriendly" content="true">
<meta name="referrer" content="always">
<link rel="preload" href="../images/style/font-champ-bold.ttf" as="font" type="font/ttf" crossorigin="">
<link rel="preload" href="../style4.css" as="style">
<link rel="preload" href="../main4.js" as="script">
<link rel="stylesheet" href="../style4.css">
<script src="../main4.js" defer="defer"></script>
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async="" src="https://www.googletagmanager.com/gtag/js?id=UA-29771508-1"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'UA-29771508-1');
</script>
</head>
<body id="bodybg" class="adv">
<div id="stt"></div>
<div id="adTop"></div>
<header>
<div id="hdr"></div>
<div id="tran"></div>
<div id="adHide"></div>
<div id="cookOK"></div>
</header>
<div class="mid">
<nav>
<div id="menuWide" class="menu"></div>
<div id="logo"><a href="../index.html"><img src="../images/style/logo-adv.svg" alt="Math is Fun Advanced"></a></div>
<div id="search" role="search"></div>
<div id="linkto"></div>
<div id="menuSlim" class="menu"></div>
<div id="menuTiny" class="menu"></div>
</nav>
<div id="extra"></div>
<article id="content" role="main">
<!-- #BeginEditable "Body" -->
<style>
.intgl {display:inline-block; margin: -4% 0.6% 4% -1%; transform: translateX(20%) translateY(35%);}
.intgl .to {text-align:center; width:2em; font: 0.8em Verdana; margin: 0 0 -5px 8px;}
.intgl .symb {font: 200% Georgia;}
.intgl .symb:before { content: "\222B";}
.intgl .from {text-align:center; width:2em; font: 0.8em Verdana; overflow:visible; }
.sigma {display:inline-block; margin: -4% 0.6% 4% -1%; transform: translateX(20%) translateY(35%);}
.sigma .to {text-align:center; width:2em; font: 0.8em Verdana; margin: 0 0 -12px 0;}
.sigma .symb {font: 200% Georgia; transform: translateY(16%); }
.sigma .symb:before { content: "\03A3";}
.sigma .from {text-align:center; width:2em; font: 0.8em Verdana; overflow:visible; }
</style>
<h1 class="center">Fourier Series</h1>
<!-- and INT{2, 3}x^2 and SIG{2, 3}x^2 -->
<p>Sine and cosine waves can make other functions!</p>
<p><span class="center">Here two different sine waves add together to make a new wave:</span></p>
<p class="center"><img src="../physics/images/wave-superposition.svg" alt="wave superposition" height="307" width="333"><br>
<i>Try "sin(x)+sin(2x)" at the <a href="../data/function-grapher.html">function grapher</a>.</i></p>
<p>(You can also <b>hear it</b> at <a href="../physics/audio-spectrum-beats.html">Sound Beats</a>.)</p>
<h2>Square Wave</h2>
<p>Can we use sine waves to make a <b>square wave</b>?</p>
<p>Our target is this square wave:</p>
<p><img src="images/fourier-square.svg" alt="Square Wave -pi to pi" height="146" width="530"></p>
<p>Start with <b>sin(x)</b>:</p>
<p><img src="images/fourier-square-sine1.svg" alt="sin(x)" height="146" width="530"></p>
<p>Then take <b>sin(3x)/3</b>:</p>
<p><img src="images/fourier-square-sine3.svg" alt="sin(3x)/3:" height="146" width="530"></p>
<p>And add it to make <b>sin(x)+sin(3x)/3</b>:</p>
<p><img src="images/fourier-square-sine1-3.svg" alt="sin(x)+sin(3x)/3:" height="146" width="530"></p>
<p>Can you see how it starts to look a little like a square wave?</p>
<p>Now take <b>sin(5x)/5</b>:</p>
<p><img src="images/fourier-square-sine5.svg" alt="sin(5x)/5:" height="146" width="530"></p>
<p>Add it also, to make <b>sin(x)+sin(3x)/3+sin(5x)/5</b>:</p>
<p><img src="images/fourier-square-sine1-5.svg" alt="sin(x)+sin(3x)/3+sin(5x)/5" height="146" width="530"></p>
<p>Getting better! Let's add a lot more sine waves.</p>
<p>Using 20 sine waves we get <b>sin(x)+sin(3x)/3+sin(5x)/5 + ... + sin(39x)/39</b>:</p>
<p><img src="images/fourier-square-sine1-39.svg" alt="sin(x)+sin(3x)/3+sin(5x)/5" height="146" width="530"></p>
<p>Using 100 sine waves we get <b>sin(x)+sin(3x)/3+sin(5x)/5 + ... + sin(199x)/199</b>:</p>
<p><img src="images/fourier-square-sine1-199.svg" alt="sin(x)+sin(3x)/3+sin(5x)/5" height="146" width="530"></p>
<p>And if we could add infinite sine waves in that pattern we would <b>have</b> a square wave!</p>
<p>So we can say that:</p>
<p class="center large">a square wave = sin(x) + sin(3x)/3 + sin(5x)/5 + ... (infinitely)</p>
<p>That is the idea of a Fourier series.</p>
<p>By adding infinite sine (and or cosine) waves we can make other functions, even if they are a bit weird.</p>
<div class="fun">
<p>You might like to have a little play with:</p>
<p class="center"><a href="fourier-series-graph.html">The Fourier Series Grapher</a></p>
<p>And it is also fun to use <a href="../geometry/spiral-artist.html">Spiral Artist</a> and see how circles make waves.</p>
<p>They are designed to be experimented with, so play around and get a feel for the subject.</p>
</div>
<h2>Finding the Coefficients</h2>
<p>How did we know to use sin(3x)/3, sin(5x)/5, etc?</p>
<p>There are formulas!</p>
<p>First let us write down a full series of sines and cosines, with a name for all coefficients:</p>
<div class="center large" style="">f(x) = a<sub>0</sub> +
<div class="sigma">
<div class="to"></div>
<div class="symb"></div>
<div class="from">n=1</div>
</div> a<sub>n</sub> cos(nx<span class="intbl"><em><span class="times">π</span></em><strong>L</strong></span>) + <div class="sigma">
<div class="to"></div>
<div class="symb"></div>
<div class="from">n=1</div>
</div> b<sub>n</sub> sin(nx<span class="intbl"><em><span class="times">π</span></em><strong>L</strong></span>)</div>
<!-- f(x) = a_0 + SIG{n=1, INF} a_n cos(nx PI/L ) + SIG{n=1, INF} b_n sin(nx PI/L ) -->
<p>Where:</p>
<ul>
<li>f(x) is the function we want (such as a square wave)</li>
<li>L is <b>half of the period</b> of the function</li>
<li>a<sub>0</sub>, a<sub>n</sub> and b<sub>n</sub> are <b>coefficients</b> that we need to calculate!</li>
</ul>
<div class="fun"><br>
<div class="">What does
<div class="sigma">
<div class="to"></div>
<div class="symb"></div>
<div class="from">n=1</div>
</div> a<sub>n</sub> cos(nx<span class="intbl"><em><span class="times">π</span></em><strong>L</strong></span>) mean?</div>
<!-- What does SIG{n=1, INF} a_n cos(nx PI/L ) mean? -->
<p>It uses <a href="../algebra/sigma-notation.html">Sigma Notation</a> to mean <b>sum</b> up the series of values starting at n=1:</p>
<ul>
<li>a<sub>1</sub> cos(1x <span class="times">π</span>/L)</li>
<li>a<sub>2</sub> cos(2x <span class="times">π</span>/L)</li>
<li>etc</li>
</ul>
<p>We do not (yet) know the values of a<sub>1</sub>, a<sub>2</sub> etc.</p>
</div>
<p>To find the coefficients a<sub>0</sub>, a<sub>n</sub> and b<sub>n</sub> we use these formulas:</p>
<div class="center large" style="">a<sub>0</sub> = <span class="intbl"><em>1</em><strong>2L</strong></span>
<div class="intgl">
<div class="to">L</div>
<div class="symb"></div>
<div class="from">L</div>
</div> f(x) dx</div>
<!-- a_0 = 1/2L INT{-L, L} f(x) dx -->
<div class="center large" style="">a<sub>n</sub> = <span class="intbl"><em>1</em><strong>L</strong></span>
<div class="intgl">
<div class="to">L</div>
<div class="symb"></div>
<div class="from">L</div>
</div> f(x) cos(nx<span class="intbl"><em><span class="times">π</span></em><strong>L</strong></span>) dx</div>
<!-- a_n = 1/L INT{-L, L} f(x) cos(nx PI/L ) dx -->
<div class="center large" style="">b<sub>n</sub> = <span class="intbl"><em>1</em><strong>L</strong></span>
<div class="intgl">
<div class="to">L</div>
<div class="symb"></div>
<div class="from">L</div>
</div> f(x) sin(nx<span class="intbl"><em><span class="times">π</span></em><strong>L</strong></span>) dx</div>
<!-- b_n = 1/L INT{-L, L} f(x) sin(nx PI/L ) dx -->
<div class="fun"><br>
<div style="">What does &nbsp;
<div class="intgl">
<div class="to">L</div>
<div class="symb"></div>
<div class="from">L</div>
</div>f(x) sin(nx<span class="intbl"><em><span class="times">π</span></em><strong>L</strong></span>) dx mean?</div>
<!-- What does INT{-L, L} f(x) sin(nx PI/L ) dx mean? -->
<p>It is an <a href="integration-introduction.html">integral</a>, but in practice it just means to find the <b>net area</b> of</p>
<p class="center"><b>f(x) sin(nx<span class="intbl"><em><span class="times">π</span></em><strong>L</strong></span>)</b></p>
<p>between L and L</p>
<p>We can often find that area just by sketching and using basic calculations, but other times we may need to use <a href="integration-rules.html">Integration Rules</a>.</p>
</div>
<p>&nbsp;</p>
<p>So this is what we do:</p>
<ul>
<li>Take our <b>target function, multiply it by sine</b> (or cosine) and <b>integrate</b> (find the area)</li>
<li>Do that for n=0, n=1, etc to calculate each coefficient</li>
<li>And after we calculate all coefficients, we put them into the series formula above.</li>
</ul>
<p>Let us see how to do each step and then assemble the result at the end!</p>
<div class="example">
<h3>Example: This Square Wave:</h3>
<p class="center"><img src="images/fourier-square.svg" alt="Square Wave -pi to pi" height="146" width="530"></p>
<ul>
<li><b>L = <span class="times">π</span></b> &nbsp; <i>(the Period is 2<span class="times">π</span>)</i></li>
<li>The square wave is from <b>h</b> to <b>+h</b></li>
</ul>
<p>Now our job is to calculate <b>a<sub>0</sub></b>, <b>a<sub>n</sub></b> and <b>b<sub>n</sub></b></p>
<p>&nbsp;</p>
<p><b>a<sub>0</sub></b> is the net area between L and L, then divided by 2L. It is basically an <b>average</b> of f(x) in that range.</p>
<p>Looking at this sketch:</p>
<p class="center"><img src="images/fourier-square-area.svg" alt="Square Wave -pi to pi" height="146" width="530"><br>
The net area of the square wave from L to L is <b>zero</b>.</p>
<p>So we know that:</p>
<p class="center larger">a<sub>0</sub> = 0</p>
<p class="center larger">&nbsp;</p>
<p>For <b>a<sub>1</sub></b> we know that n=1 and L=<span class="times">π</span>, so:</p>
<div class="center large">a<sub>1</sub> = <span class="intbl"><em>1</em><strong><span class="times">π</span></strong></span>
<div class="intgl">
<div class="to"><span class="times">π</span></div>
<div class="symb"></div>
<div class="from"><span class="times">π</span></div>
</div> f(x) cos(1x<span class="intbl"><em><span class="times">π</span></em><strong><span class="times">π</span></strong></span>) dx</div>
<!-- a_1 = 1/PI INT{-PI, PI} f(x) cos(1x PI/PI ) dx -->
<p>Which simplifies to:</p>
<div class="center large">a<sub>1</sub> = <span class="intbl"><em>1</em><strong><span class="times">π</span></strong></span>
<div class="intgl">
<div class="to"><span class="times">π</span></div>
<div class="symb"></div>
<div class="from"><span class="times">π</span></div>
</div> f(x) cos(x) dx</div>
<!-- a_1 = 1/PI INT{-PI, PI} f(x) cos(x) dx -->
<p>Now, because the square wave changes abruptly at x=0 we need to break the calculation into <b><span class=" times">π</span> to 0</b> and <b>0 to <span class=" times">π</span></b>,</p>
<p><b>From <span class=" times">π</span> to 0</b> we know f(x) is simply equal to <b>h</b>:</p>
<div class="center large"><span class="intbl"><em>1</em><strong><span class="times">π</span></strong></span>
<div class="intgl">
<div class="to">0</div>
<div class="symb"></div>
<div class="from"><span class="times">π</span></div>
</div> h cos(x) dx</div>
<!---&minus; 1/PI INT{-PI, 0} -h cos(x) dx ---->
<p>We can move the constant <b>h</b> outside the integral:</p>
<div class="center large"><span class="intbl"><em>h</em><strong><span class="times">π</span></strong></span>
<div class="intgl">
<div class="to">0</div>
<div class="symb"></div>
<div class="from"><span class="times">π</span></div>
</div> cos(x) dx</div>
<!-- -h/PI INT{-PI, 0} cos(x) dx -->
<p>Let's sketch <b>cos(x)</b>:</p>
<p class="center"><img src="images/fourier-square-cos1.svg" alt="Square Wave -pi to pi" height="146" width="530"><br>
The net area of cos(x) from -<span class=" times">π</span> to 0 is <b>zero</b>.</p>
<p>So the net area must be 0:</p>
<div class="center large"><span class="intbl"><em>h</em><strong><span class="times">π</span></strong></span>
<div class="intgl">
<div class="to">0</div>
<div class="symb"></div>
<div class="from"><span class="times">π</span></div>
</div> cos(x) dx = 0</div>
<!-- -h/PI INT{-PI, 0} cos(x) dx = 0 -->
<p>&nbsp;</p>
<p>The same idea applies from <b>0 to <span class="times">π</span></b>,</p>
<p class="center"><img src="images/fourier-square-cos1-pos.svg" alt="Square Wave -pi to pi" height="146" width="530"><br>
The net area of cos(x) from 0 to <span class="times">π</span> is <b>zero</b>.</p>
<p>and so we can conclude that:</p>
<p class="center larger">a<sub>1</sub> = 0</p>
<p>Now let us look at a<sub>2</sub></p>
<p>Aaaand ... the same thing happens!</p>
<p class="center"><img src="images/fourier-square-cos2-neg.svg" alt="Square Wave -pi to pi" height="146" width="530"><br>
The net area of cos(2x) from <b>-<span class="times">π</span> to 0</b> is <b>zero</b>.</p>
<p>And:</p>
<p class="center"><img src="images/fourier-square-cos2-pos.svg" alt="Square Wave -pi to pi" height="146" width="530"><br>
The net area of cos(2x) from <b>0 to <span class="times">π</span></b> is also <b>zero</b>.</p>
<p>So we know that:</p>
<p class="center larger">a<sub>2</sub> = 0</p>
<p>In fact we can extend this idea to every value of <b>a</b> and conclude that:</p>
<p class="center larger">a<sub>n</sub>= 0</p>
<p>&nbsp;</p>
<p><i>So far there has been no need for any major calculations! A few sketches and a little thought have been enough.</i></p>
<p><i>But now on to the <b>sine</b> function!</i></p>
<p>&nbsp;</p>
<p>For <b>b<sub>1</sub></b> we know that n=1 and L=<span class="pi times">π</span>, so:</p>
<div class="center large">b<sub>1</sub> = <span class="intbl"><em>1</em><strong><span class="times">π</span></strong></span>
<div class="intgl">
<div class="to"><span class="times">π</span></div>
<div class="symb"></div>
<div class="from"><span class="times">π</span></div>
</div> sin(1x<span class="intbl"><em><span class="times">π</span></em><strong><span class="times">π</span></strong></span>) dx</div>
<!-- b_1 = 1/PI INT{-PI, PI} sin(1x PI/PI ) dx -->
<p>Which simplifies to:</p>
<div class="center large">b<sub>1</sub> = <span class="intbl"><em>1</em><strong><span class="times">π</span></strong></span>
<div class="intgl">
<div class="to"><span class="times">π</span></div>
<div class="symb"></div>
<div class="from"><span class="times">π</span></div>
</div> sin(x) dx</div>
<!-- b_1 = 1/PI INT{-PI, PI} sin(x) dx -->
<p>and as before, because of the abrupt change at x=0, we need to break the calculation into <b><span class=" times">π</span> to 0</b> and <b>0 to <span class="times">π</span></b>,</p>
<p>So, just looking at the integral <b>from <span class="pi times">π</span> to 0</b>, we know f(x) = h:</p>
<p>We can move the constant <b>h</b> outside the integral:</p>
<div class="center large"><span class="intbl"><em>h</em><strong><span class="times">π</span></strong></span>
<div class="intgl">
<div class="to">0</div>
<div class="symb"></div>
<div class="from"><span class="times">π</span></div>
</div> sin(x) dx</div>
<!-- -h/PI INT{-PI, 0} sin(x) dx -->
<p>And <b>sin(x)</b> looks like this:</p>
<p class="center"><img src="images/fourier-square-sine1-area.svg" alt="sin(x)" height="146" width="530"></p>
<p>How do we know the area is 2?</p>
<p>First we use <a href="integration-rules.html">Integration Rules</a> to find the integral of <b>sin(x)</b> is <span class="center"><b></b></span><b>cos(x)</b>:</p>
<p>Then we calculate the <a href="integration-definite.html">definite integral</a> between <span class="center"></span><span class="times">π</span> and 0 by calculating the value of <span class="center"></span>cos(x) for <b>0</b>, and for <b><span class="times">π</span></b>, and then subtracting:</p>
<p class="center">[cos(0)] [cos(<span class="times">π</span>)] = 1 1 = 2</p>
<p>So, between <span class="center"></span><span class="times">π</span> and 0 we get</p>
<p class="center"><span class="intbl"><em>h</em><strong><span class="times">π</span></strong></span>(2)</p>
<p>&nbsp;</p>
<p>Next we look at the integral from <b>0 to <span class="times">π</span></b>:</p>
<div class="center large"><span class="intbl"><em>h</em><strong><span class="times">π</span></strong></span>
<div class="intgl">
<div class="to"><span class="times">π</span></div>
<div class="symb"></div>
<div class="from">0</div>
</div> sin(x) dx</div>
<!-- -h/PI INT{0, PI} sin(x) dx -->And its integral is:
<p class="center">[cos(<span class="times">π</span>)] [cos(0<span class="times"></span>)] = 1 [1] = 2</p>
<p class="center"><img src="images/fourier-square-sine1-area-pos.svg" alt="sin(x)" height="146" width="530"></p>
<p>Now, combining both sides we get:</p>
<p class="center larger">b<sub>1</sub> = <span class="intbl"><em>1</em><strong><span class="times">π</span></strong></span>[ (h) × (2) + (h) × (2) ] = <span class="intbl"><em>4h</em><strong><span class="times">π</span></strong></span></p>
<p>&nbsp;</p>
<p>For <b>b<sub>2</sub></b> we have this integral:</p>
<div class="center large"><span class="intbl"><em>h</em><strong><span class="times">π</span></strong></span>
<div class="intgl">
<div class="to"><span class="times">π</span></div>
<div class="symb"></div>
<div class="from"><span class="times">π</span></div>
</div> sin(2x) dx</div>
<!-- -h/PI INT{-PI, PI} sin(2x) dx -->
<p>From <span class="times">π </span>to 0 it looks like this:</p>
<p class="center"><img src="images/fourier-square-sin2-neg.svg" alt="Square Wave -pi to pi" height="146" width="530"><br>
The net area of sin(2x) from <b><span class="times">π</span> to 0</b> is <b>zero</b>.</p>
<p>And we have seen this kind of thing before, so we conclude that:</p>
<p class="center larger">b<sub>2</sub> = 0</p>
<p>For <b>b<sub>3</sub></b> we have this integral:</p>
<div class="center large"><span class="intbl"><em>h</em><strong><span class="times">π</span></strong></span>
<div class="intgl">
<div class="to"><span class="times">π</span></div>
<div class="symb"></div>
<div class="from"><span class="times">π</span></div>
</div> sin(3x) dx</div>
<!-- -h/PI INT{-PI, PI} sin(3x) dx -->
<p>From <span class="times">π </span>to 0 we get this interesting situation:</p>
<p class="center"><img src="images/fourier-square-sin3-neg.svg" alt="Square Wave -pi to pi" height="146" width="530"><br>
Two areas cancel, but the third one is important!</p>
<p>So it is like the b<sub>1</sub> integral, but with only one-third of the area.</p>
<p>For <b>0 to <span class="times">π</span></b> we have:</p>
<p class="center"><img src="images/fourier-square-sin3-pos.svg" alt="Square Wave -pi to pi" height="146" width="530"><br>
Again two areas cancel, but not the third</p>
<p>And we can conclude:</p>
<p class="center larger">b<sub>3</sub> = <span class="intbl"><em>b<sub>1</sub></em><strong>3</strong></span><em> </em>= <span class="intbl"><em>4h</em><strong>3<span class="times">π</span></strong></span></p>
<p>The pattern continues:</p>
<p class="center"><img src="images/fourier-square-sin4.svg" alt="Square Wave -pi to pi" height="146" width="530"><br>
When n is even the areas cancel for a result of zero.</p>
<p>&nbsp;</p>
<p class="center"><img src="images/fourier-square-sin5.svg" alt="Square Wave -pi to pi" height="146" width="530"><br>
When n is odd, all except one area cancel for a result of 1/n.</p>
<p>So we can say</p>
<p class="center"><span class="larger">b<sub>n</sub> = <span class="intbl"><em>4h</em><strong>n<span class="times">π</span></strong></span></span> when n is odd, but <b>0</b> otherwise</p>
<p>&nbsp;</p>
<p>And we arrive at our last step: putting the coefficients into the master formula:</p>
<div class="center large">f(x) = a<sub>0</sub> +
<div class="sigma">
<div class="to"></div>
<div class="symb"></div>
<div class="from">n=1</div>
</div> a<sub>n</sub> cos(nx<span class="intbl"><em><span class="times">π</span></em><strong>L</strong></span>) + <div class="sigma">
<div class="to"></div>
<div class="symb"></div>
<div class="from">n=1</div>
</div> b<sub>n</sub> sin(nx<span class="intbl"><em><span class="times">π</span></em><strong>L</strong></span>)</div>
<!-- f(x) = a_0 + SIG{n=1, INF} a_n cos(nx PI/L ) + SIG{n=1, INF} b_n sin(nx PI/L ) -->
<p>And we know that:</p>
<ul>
<li>a<sub>0</sub> = 0</li>
<li>a<sub>n</sub> = 0 (all of them!),</li>
<li>b<sub>n</sub> = 0<strong><span class="times"></span></strong> when n is even</li>
<li>b<sub>n</sub> = <span class="intbl"><em>4h</em><strong>n<span class="times">π</span></strong></span> when n is odd</li>
</ul>
<p>So:</p>
<p class="center large">f(x) = <span class="intbl"><em>4h</em><strong><span class="times">π</span></strong></span> [ sin(x) + <span class="intbl"><em>sin(3x)</em><strong>3</strong></span> + <span class="intbl"><em>sin(5x)</em><strong>5</strong></span> + ... ]</p>
</div>
<p>In conclusion:</p>
<ul>
<li>Think about each coefficient, sketch the functions and see if you can find a pattern,</li>
<li>put it all together into the series formula at the end</li>
</ul>
<p>&nbsp;</p>
<div class="fun">
<p>And when you are done go over to:</p>
<p class="center"><a href="fourier-series-graph.html">The Fourier Series Grapher</a></p>
<p>and see if you got it right!</p>
<p>Why not try it with "sin((2n-1)*x)/(2n-1)", the 2n1 neatly gives odd values, and see if you get a square wave.</p>
</div>
<h2>Other Functions</h2>
<p>Of course we can use this for many other functions!</p>
<p>But we must be able to work out all the coefficients, which in practice means that we work out the <b>area</b> of:</p>
<ul>
<li>the function</li>
<li>the function times sine</li>
<li>the function times cosine</li>
</ul>
<p>But as we saw above we can use tricks like breaking the function into pieces, using common sense, geometry and calculus to help us.</p>
<p>Here are a few well known ones:</p>
<div class="simple">
<table style="border: 0; margin:auto;">
<tbody>
<tr>
<th>Wave</th>
<th>Series</th>
<th><a href="fourier-series-graph.html">Fourier Series Grapher</a></th>
</tr>
<tr>
<td>Square Wave</td>
<td>sin(x) + sin(3x)/3 + sin(5x)/5 + ...</td>
<td>sin((2n1)*x)/(2n1)</td>
</tr>
<tr>
<td>Sawtooth</td>
<td>sin(x) + sin(2x)/2 + sin(3x)/3 + ...</td>
<td>sin(n*x)/n</td>
</tr>
<tr>
<td>Pulse</td>
<td>sin(x) + sin(2x) + sin(3x) + ...</td>
<td>sin(n*x)*0.1</td>
</tr>
<tr>
<td>Triangle</td>
<td>sin(x) sin(3x)/9 + sin(5x)/25 ...</td>
<td>sin((2n1)*x)*(1)^n/(2n1)^2</td>
</tr>
</tbody></table>
</div>
<p>&nbsp;</p>
<p>&nbsp;</p>
<div class="fun">
<p><b>Footnote. Different versions of the formula!</b></p>
<p>On this page we used the general formula:</p>
<div class="center large">f(x) = a<sub>0</sub> +
<div class="sigma">
<div class="to"></div>
<div class="symb"></div>
<div class="from">n=1</div>
</div> a<sub>n</sub> cos(nx<span class="intbl"><em><span class="times">π</span></em><strong>L</strong></span>) + <div class="sigma">
<div class="to"></div>
<div class="symb"></div>
<div class="from">n=1</div>
</div> b<sub>n</sub> sin(nx<span class="intbl"><em><span class="times">π</span></em><strong>L</strong></span>)</div>
<!-- f(x) = a_0 + SIG{n=1, INF} a_n cos(nx PI/L ) + SIG{n=1, INF} b_n sin(nx PI/L ) -->
<p>But when the function f(x) has a period from -<span class="times">π</span> to <span class="times">π</span> we can use a simplified version:</p>
<div class="center large">f(x) = a<sub>0</sub> +
<div class="sigma">
<div class="to"></div>
<div class="symb"></div>
<div class="from">n=1</div>
</div> a<sub>n</sub> cos(nx) + <div class="sigma">
<div class="to"></div>
<div class="symb"></div>
<div class="from">n=1</div>
</div> b<sub>n</sub> sin(nx)</div>
<!-- f(x) = a_0 + SIG{n=1, INF} a_n cos(nx) + SIG{n=1, INF} b_n sin(nx) -->
<p>Or there is this one, where a<sub>0</sub> is rolled into the first sum (now n=<b>0</b> to ∞):</p>
<div class="center large">f(x) =
<div class="sigma">
<div class="to"></div>
<div class="symb"></div>
<div class="from">n=0</div>
</div> a<sub>n</sub> cos(nx) + <div class="sigma">
<div class="to"></div>
<div class="symb"></div>
<div class="from">n=1</div>
</div> b<sub>n</sub> sin(nx)</div>
<!-- f(x) = SIG{n=0, INF} a_n cos(nx) + SIG{n=1, INF} b_n sin(nx) -->
<p>But I prefer the one we use here, as it is more practical allowing for different periods.</p>
</div>
<p>&nbsp;</p>
<div class="related">
<a href="fourier-series-graph.html">Fourier Series Graph Tool</a>
<a href="integration-introduction.html">Integration</a>
<a href="../algebra/sigma-notation.html">Sigma Notation</a><a href="../algebra/small-angle-approximations.html">Small Angle Approximations</a>
<a href="index.html">Calculus Index</a>
</div>
<!-- #EndEditable -->
</article>
<div id="adend" class="centerfull noprint"></div>
<footer id="footer" class="centerfull noprint"></footer>
<div id="copyrt">Copyright © 2022 Rod Pierce</div>
</div>
</body><!-- #EndTemplate -->
<!-- Mirrored from www.mathsisfun.com/calculus/fourier-series.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:32:19 GMT -->
</html>