lkarch.org/tools/mathisfun/www.mathsisfun.com/calculus/differential-equations-solution-guide.html
Lucas Kent e39465ad2f Changes to be committed:
new file:   Files/flashplayer_32_sa.exe
	new file:   favicon.ico
	new file:   globe.gif
	new file:   imgs/download.png
	new file:   imgs/zuck.jpg
	new file:   index.html
	new file:   other.ico
	new file:   script.js
	new file:   site.webmanifest
	new file:   sitemap.html
	new file:   styles/backround.css
	new file:   styles/border.css
	new file:   styles/fonts/Titillium_Web/OFL.txt
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf
	new file:   styles/fonts/webfontkit-20221027-163353/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2
	new file:   styles/fonts/webfontkit-20221027-165950/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2
	new file:   styles/style.css
	new file:   tools/2048/.gitignore
	new file:   tools/2048/.jshintrc
	new file:   tools/2048/CONTRIBUTING.md
	new file:   tools/2048/LICENSE.txt
	new file:   tools/2048/README.md
	new file:   tools/2048/Rakefile
	new file:   tools/2048/favicon.ico
	new file:   tools/2048/index.html
	new file:   tools/2048/js/animframe_polyfill.js
	new file:   tools/2048/js/application.js
	new file:   tools/2048/js/bind_polyfill.js
	new file:   tools/2048/js/classlist_polyfill.js
	new file:   tools/2048/js/game_manager.js
	new file:   tools/2048/js/grid.js
	new file:   tools/2048/js/html_actuator.js
	new file:   tools/2048/js/keyboard_input_manager.js
	new file:   tools/2048/js/local_storage_manager.js
	new file:   tools/2048/js/tile.js
    new file:   tools/2048/meta/apple-touch-icon.png
	new file:   tools/webretro/cores/neocd_libretro.js
	new file:   tools/webretro/cores/neocd_libretro.wasm
	new file:   tools/webretro/cores/nestopia_libretro.js
	new file:   tools/webretro/cores/nestopia_libretro.wasm
	new file:   tools/webretro/cores/o2em_libretro.js
	new file:   tools/webretro/cores/o2em_libretro.wasm
	new file:   tools/webretro/cores/opera_libretro.js
	new file:   tools/webretro/cores/opera_libretro.wasm
2022-11-02 08:40:01 -04:00

266 lines
12 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html lang="en"><!-- #BeginTemplate "/Templates/Advanced.dwt" --><!-- DW6 -->
<!-- Mirrored from www.mathsisfun.com/calculus/differential-equations-solution-guide.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:49:24 GMT -->
<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
<!-- #BeginEditable "doctitle" -->
<title>Differential Equations Solution Guide</title>
<style>
.totop {float:right; margin: 0 0 5px 10px;}
</style>
<meta name="description" content="Math explained in easy language, plus puzzles, games, quizzes, videos and worksheets. For K-12 kids, teachers and parents.">
<!-- #EndEditable -->
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
<meta name="HandheldFriendly" content="true">
<meta name="referrer" content="always">
<link rel="preload" href="../images/style/font-champ-bold.ttf" as="font" type="font/ttf" crossorigin="">
<link rel="preload" href="../style4.css" as="style">
<link rel="preload" href="../main4.js" as="script">
<link rel="stylesheet" href="../style4.css">
<script src="../main4.js" defer="defer"></script>
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async="" src="https://www.googletagmanager.com/gtag/js?id=UA-29771508-1"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'UA-29771508-1');
</script>
</head>
<body id="bodybg" class="adv">
<div id="stt"></div>
<div id="adTop"></div>
<header>
<div id="hdr"></div>
<div id="tran"></div>
<div id="adHide"></div>
<div id="cookOK"></div>
</header>
<div class="mid">
<nav>
<div id="menuWide" class="menu"></div>
<div id="logo"><a href="../index.html"><img src="../images/style/logo-adv.svg" alt="Math is Fun Advanced"></a></div>
<div id="search" role="search"></div>
<div id="linkto"></div>
<div id="menuSlim" class="menu"></div>
<div id="menuTiny" class="menu"></div>
</nav>
<div id="extra"></div>
<article id="content" role="main">
<!-- #BeginEditable "Body" -->
<h1 class="center">Differential Equations Solution Guide</h1><br>
<div class="def">
<p>A <a href="differential-equations.html">Differential Equation</a> is
an equation with a <a href="../sets/function.html">function</a> and
one or more of its <a href="derivatives-introduction.html">derivatives</a>:</p>
<p class="center"><img src="images/diff-eq-1.svg" alt="differential equation y + dy/dx = 5x" height="123" width="188"><br>
Example: an equation with the function <b>y</b> and its derivative <b> <span class="intbl"> <em>dy</em> <strong>dx</strong> </span></b> &nbsp;</p>
</div><br>
<p>In our world things change, and <b>describing how they change</b> often ends up as a Differential Equation.</p>
<p>Real world examples where
Differential Equations are used include population growth, electrodynamics, heat
flow, planetary movement, economic systems and much more!</p>
<h2>Solving</h2>
<p>A Differential Equation can be a very natural way of describing something.</p>
<div class="example">
<h3>Example: Population Growth</h3>
<p>This short equation says that a population "N" increases (at any instant) as the growth rate times the population at that instant:</p>
<p class="center large"><span class="intbl"><em>dN</em><strong>dt</strong></span> = rN</p>
</div>
<p>But it is not very useful as it is.</p>
<p>We need to
<b>solve</b> it!</p>
<p>We <b>solve</b> it when we discover <b>the function</b> <b>y</b> (or
set of functions y) that satisfies the equation, and then it can be used successfully.</p>
<div class="example">
<h3>Example: continued</h3>
<p>Our example is <b>solved</b> with this equation:</p>
<p class="center larger">N(t) = N<sub>0</sub>e<sup>rt</sup></p>
<p>What does it say? Let's use it to see:</p>
<p>With <b>t</b> in months, a population that starts at 1000 (<b>N<sub>0</sub></b>) and a growth rate of 10% per month (<b>r</b>) we get:</p>
<ul>
<li>N(1 month) = 1000e<sup>0.1x1</sup> = <b>1105</b></li>
<li>N(6 months) = 1000e<sup>0.1x6</sup> = <b>1822</b></li>
<li>etc</li>
</ul>
</div>
<p>&nbsp;</p>
<p>There is <b>no magic way to solve</b> all Differential Equations.</p>
<p class="history">But over the millennia great minds have been building on each others work and have discovered different methods (possibly long and complicated methods!) of solving <b>some</b> types of Differential Equations.</p>
<p id="top-of-page">So lets take a
look at some different <b>types of Differential Equations</b> and how to solve them:</p>
<h2 id="separation">Separation of Variables</h2>
<div class="center80">
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/diff-eq-sep-var-a.svg" alt="Separation of Variables" height="152" width="129"></p>
<p><a href="separation-variables.html">Separation of Variables</a> can be used when:</p>
<ul>
<li>All the y terms (including dy) can be moved to one side
of the equation, and</li>
<li>All the x terms (including dx) to the other side.</li>
</ul>
<p>If that is the case, we can then integrate and simplify to get the the
solution.</p>
<div style="clear:both"></div>
</div>
<h2 id="first-order">First Order Linear</h2>
<div class="center80">
<p><a href="differential-equations-first-order-linear.html">First Order Linear Differential Equations</a> are of this type:</p>
<div class="center large">
<span class="intbl"><em>dy</em><strong>dx</strong></span> + P(x)y = Q(x)
</div>
<div><a href="#homogeneous"><br>
</a></div>Where <b>P(x)</b> and <b>Q(x)</b> are functions of x.
<p>They are "First Order" when there is only <b> <span class="intbl"> <em>dy</em> <strong>dx</strong> </span></b> (not <b> <span class="intbl"> <em>d<sup>2</sup>y</em> <strong>dx<sup>2</sup></strong> </span></b> or <b> <span class="intbl"> <em>d<sup>3</sup>y</em> <strong>dx<sup>3</sup></strong> </span></b> , etc.)</p>
<p>Note: a <b>non-linear</b> differential equation is often hard to solve, but we can sometimes approximate it with a linear differential equation to
find an easier solution.</p>
</div>
<h2 id="homogeneous">Homogeneous Equations</h2>
<div class="center80">
<p><a href="differential-equations-homogeneous.html">Homogeneous Differential Equations</a> look like this:</p>
<div class="center large">
<span class="intbl"> <em>dy</em> <strong>dx</strong> </span> = F (&nbsp;<span class="intbl"> <em>y</em> <strong>x</strong></span> )
</div>
<div><a href="#bernoulli"><br>
</a></div>We can solve them by using a change of variables:
<p class="center large">v = <span class="intbl"> <em>y</em> <strong>x</strong> </span></p>
<p>which can then be solved using <a href="separation-variables.html">Separation of Variables</a> .</p>
</div>
<h2 id="bernoulli">Bernoulli Equation</h2>
<div class="center80">
<p><a href="differential-equations-bernoulli.html">Bernoull Equations</a> are of this general form:</p>
<p class="center"><span class="large"><span class="intbl"><em>dy</em><strong>dx</strong></span> + P(x)y = Q(x)y<sup>n</sup></span><br>
where n is any Real Number but not 0 or 1</p>
<ul>
<li>When n = 0 the equation can be solved as a First Order Linear
Differential Equation.</li>
<li>When n = 1 the equation can be solved using Separation of
Variables.</li>
</ul> <p>For other values of n we can solve it by substituting&nbsp; <span class="large">u = y<sup>1n</sup></span> and turning it into a linear differential equation (and then solve that).</p>
</div>
<h2 id="second">Second Order Equation</h2>
<div class="center80">
<p><a href="differential-equations-second-order.html">Second Order (homogeneous)</a> are of the type:</p>
<div>
<div class="center large">
<span class="intbl"></span><span class="intbl"><em>d<sup>2</sup>y</em><strong>dx</strong></span> + P(x)<span class="intbl"> <em>dy</em> <strong>dx</strong></span> + Q(x)y = 0
</div> </div>
<a href="#undetermined"></a>
<p>Notice there is a second derivative&nbsp; <span class="intbl"><em>d<sup>2</sup>y</em> dx<sup>2</sup></span></p>
<p>The
<b> general</b> second order equation looks like this</p>
<p class="large center">&nbsp;a(x)<span class="intbl"><em>d<sup>2</sup>y</em> dx<sup>2</sup></span> + b(x)<span class="intbl"><em>dy</em> dx</span> + c(x)y = Q(x)</p>
<p>There are many distinctive cases among these
equations.</p>
<p>They are classified as homogeneous (Q(x)=0), non-homogeneous,
autonomous, constant coefficients, undetermined coefficients etc.</p>
<p>For <b>non-homogeneous</b> equations the <b>general
solution</b> is the sum of:</p>
<ul>
<li>the solution to the corresponding homogeneous
equation, and</li>
<li>the particular solution of the
non-homogeneous equation</li></ul>
</div>
<h2 id="undetermined">Undetermined Coefficients</h2>
<div class="center80">
<p>The
<a href="differential-equations-undetermined-coefficients.html">Undetermined
Coefficients</a> method works for a non-homogeneous equation like this:</p>
<p class="center large"><span class="intbl"><em>d<sup>2</sup>y</em><strong>dx<sup>2</sup></strong></span> + P(x)<span class="intbl"><em>dy</em><strong>dx</strong></span> + Q(x)y
= f(x)</p>
<p>where f(x) is a <b>polynomial, exponential, sine, cosine or a linear combination of those</b>. (For a more general version see Variation of Parameters below)</p>This method also involves making a <b>guess</b>!
</div>
<h2 id="variation">Variation of Parameters</h2>
<div class="center80">
<p><a href="differential-equations-variation-parameters.html">Variation
of Parameters</a> is a little messier but works on a wider range of functions than the previous <b>Undetermined
Coefficients</b>.</p></div>
<h2 id="exact">Exact Equations and Integrating Factors</h2>
<div class="center80">
<p><a href="differential-equations-exact-factors.html">Exact Equations and Integrating Factors</a> can be used for a first-order differential equation like this:</p>
<p class="center large">M(x, y)dx + N(x, y)dy = 0</p>
<p>that must have some special function <span class="large">I(x, y)</span> whose <a href="derivatives-partial.html">partial derivatives</a> can be put in place of M and N like this:</p>
<div>
<p class="center large"><span class="intbl"><em>∂I</em><strong>∂x</strong></span>dx + <span class="intbl"><em>∂I</em><strong>∂y</strong></span>dy = 0</p>
</div>Our job is to find that magical function I(x, y) if it exists.
</div>
<h2>Ordinary Differential Equations (ODEs) vs Partial Differential Equations (PDEs)</h2>
<p>All of the methods so far are known as <b>Ordinary Differential Equations</b> (ODE's).</p>
<div class="words">
<p>The term <b>ordinary</b> is used in contrast with the term <i>partial</i> to indicate derivatives with respect to only one independent variable.</p>
</div>
<p>Differential Equations with unknown multi-variable functions and their
partial derivatives are a different type and require separate methods to
solve them.</p>
<p>They are called <b>Partial Differential Equations</b> (PDE's), and
sorry, but we don't have any page on this topic yet.</p>
<p>&nbsp;</p><br>
<div class="related">
<a href="index.html">Calculus Index</a>
</div>
<!-- #EndEditable -->
</article>
<div id="adend" class="centerfull noprint"></div>
<footer id="footer" class="centerfull noprint"></footer>
<div id="copyrt">Copyright © 2021 MathsIsFun.com</div>
</div>
</body><!-- #EndTemplate -->
<!-- Mirrored from www.mathsisfun.com/calculus/differential-equations-solution-guide.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:49:24 GMT -->
</html>