Lucas Kent e39465ad2f Changes to be committed:
new file:   Files/flashplayer_32_sa.exe
	new file:   favicon.ico
	new file:   globe.gif
	new file:   imgs/download.png
	new file:   imgs/zuck.jpg
	new file:   index.html
	new file:   other.ico
	new file:   script.js
	new file:   site.webmanifest
	new file:   sitemap.html
	new file:   styles/backround.css
	new file:   styles/border.css
	new file:   styles/fonts/Titillium_Web/OFL.txt
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf
	new file:   styles/fonts/webfontkit-20221027-163353/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2
	new file:   styles/fonts/webfontkit-20221027-165950/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2
	new file:   styles/style.css
	new file:   tools/2048/.gitignore
	new file:   tools/2048/.jshintrc
	new file:   tools/2048/CONTRIBUTING.md
	new file:   tools/2048/LICENSE.txt
	new file:   tools/2048/README.md
	new file:   tools/2048/Rakefile
	new file:   tools/2048/favicon.ico
	new file:   tools/2048/index.html
	new file:   tools/2048/js/animframe_polyfill.js
	new file:   tools/2048/js/application.js
	new file:   tools/2048/js/bind_polyfill.js
	new file:   tools/2048/js/classlist_polyfill.js
	new file:   tools/2048/js/game_manager.js
	new file:   tools/2048/js/grid.js
	new file:   tools/2048/js/html_actuator.js
	new file:   tools/2048/js/keyboard_input_manager.js
	new file:   tools/2048/js/local_storage_manager.js
	new file:   tools/2048/js/tile.js
    new file:   tools/2048/meta/apple-touch-icon.png
	new file:   tools/webretro/cores/neocd_libretro.js
	new file:   tools/webretro/cores/neocd_libretro.wasm
	new file:   tools/webretro/cores/nestopia_libretro.js
	new file:   tools/webretro/cores/nestopia_libretro.wasm
	new file:   tools/webretro/cores/o2em_libretro.js
	new file:   tools/webretro/cores/o2em_libretro.wasm
	new file:   tools/webretro/cores/opera_libretro.js
	new file:   tools/webretro/cores/opera_libretro.wasm
2022-11-02 08:40:01 -04:00

444 lines
20 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html lang="en"><!-- #BeginTemplate "/Templates/Main.dwt" --><!-- DW6 -->
<!-- Mirrored from www.mathsisfun.com/algebra/quadratic-equation.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:37:00 GMT -->
<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
<!-- #BeginEditable "doctitle" -->
<title>Quadratic Equations</title>
<!-- #EndEditable -->
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
<meta name="HandheldFriendly" content="true">
<meta name="referrer" content="always">
<link rel="preload" href="../images/style/font-champ-bold.ttf" as="font" type="font/ttf" crossorigin="">
<link rel="preload" href="../style4.css" as="style">
<link rel="preload" href="../main4.js" as="script">
<link rel="stylesheet" href="../style4.css">
<script src="../main4.js" defer="defer"></script>
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async="" src="https://www.googletagmanager.com/gtag/js?id=UA-29771508-1"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'UA-29771508-1');
</script>
</head>
<body id="bodybg">
<div id="stt"></div>
<div id="adTop"></div>
<header>
<div id="hdr"></div>
<div id="tran"></div>
<div id="adHide"></div>
<div id="cookOK"></div>
</header>
<div class="mid">
<nav>
<div id="menuWide" class="menu"></div>
<div id="logo"><a href="../index.html"><img src="../images/style/logo.svg" alt="Math is Fun"></a></div>
<div id="search" role="search"></div>
<div id="linkto"></div>
<div id="menuSlim" class="menu"></div>
<div id="menuTiny" class="menu"></div>
</nav>
<div id="extra"></div>
<article id="content" role="main">
<!-- #BeginEditable "Body" -->
<h1 class="center">Quadratic Equations</h1>
<p>An example of a <b>Quadratic Equation</b>:</p>
<p class="center"><img src="images/quadratic-equation-reason.svg" alt="A Quadratic Equation 5x^2 - 3x + 3 = 0" height="63" width="296"></p>
<p>The function makes nice curves like this one:</p>
<p class="center"><a href="../geometry/parabola.html"><img src="images/quadratic-soccer.gif" alt="quadratic soccer kick" height="150" width="266"></a></p>
<h2>Name</h2>
<div class="words">
<p>The name <b>Quadratic</b> comes from "quad" meaning square, because the variable gets <a href="../square-root.html">squared</a> (like <b>x<sup>2</sup></b>).</p>
<p>It is also called an "Equation of <a href="degree-expression.html">Degree</a> 2" (because of the "2" on the <b>x</b>)</p>
</div>
<h2>Standard Form</h2>
<p>The <b>Standard Form</b> of a Quadratic Equation looks like this:</p>
<p class="center"><img src="images/quadratic-equation.svg" alt="Quadratic Equation: ax^2 + bx + c = 0" height="33" width="301"><br></p>
<ul>
<li><b>a</b>, <b>b</b> and <b>c</b> are known values. <b>a</b> can't be 0.</li>
</ul>
<ul>
<li>"<b>x</b>" is the <b><a href="definitions.html">variable</a></b> or unknown (we don't know it yet).</li>
</ul>
<p>&nbsp;</p>
<p>Here are some examples:</p>
<div class="simple">
<table style="border: 0; margin:auto;">
<tbody>
<tr>
<td class="larger" style="white-space: nowrap;" align="right" valign="top" nowrap="nowrap"><b>2x<sup>2</sup> + 5x + 3 = 0</b></td>
<td style="width:20px;">&nbsp;</td>
<td>In this one <b>a=2</b>, <b>b=5</b> and <b>c=3</b></td>
</tr>
<tr>
<td align="right" valign="top" nowrap="nowrap">&nbsp;</td>
<td>&nbsp;</td>
<td>&nbsp;</td>
</tr>
<tr>
<td class="larger" align="right" height="91" valign="top" nowrap="nowrap"><b>x<sup>2</sup> 3x = 0</b></td>
<td>&nbsp;</td>
<td height="91"> This one is a little more tricky:
<ul>
<li>Where is <b>a</b>? Well <b>a=1</b>, as we don't usually write "1x<sup>2</sup>"</li>
<li><b>b = 3</b></li>
<li>And where is <b>c</b>? Well <b>c=0</b>, so is not shown.</li>
</ul>
</td>
</tr>
<tr>
<td class="larger" align="right" valign="top" nowrap="nowrap"><b>5x 3 = 0</b></td>
<td>&nbsp;</td>
<td><b>Oops!</b> This one is <b>not</b> a quadratic equation: it is missing <b>x<sup>2</sup></b><br>
(in other words <b>a=0</b>, which means it can't be quadratic)</td>
</tr>
</tbody></table>
</div>
<p>&nbsp;</p>
<p style="float:left; margin: 0 10px 5px 0;"><a href="quadratic-equation-graph.html"><img src="images/quadratic-graph.svg" alt="Quadratic Graph" height="140" width="175"></a></p>
<h2>Have a Play With It</h2>
<p>Play with the "<a href="quadratic-equation-graph.html">Quadratic Equation Explorer</a>" so you can see:</p>
<ul>
<li>the function's graph, and</li>
<li>the solutions (called "roots").</li>
</ul>
<p>&nbsp;</p>
<h2>Hidden Quadratic Equations!</h2>
<p>As we saw before, the <b>Standard Form</b> of a Quadratic Equation is</p>
<div class="def">
<p class="center larger">ax<sup>2</sup> + bx + c = 0</p>
</div>
<p>But sometimes a quadratic equation does not look like that!</p>
<p>For example:</p>
<div class="simple">
<table style="border: 0; margin:auto;">
<tbody>
<tr style="text-align:center;">
<th>In disguise</th>
<th class="large"><img src="../images/style/right-arrow.gif" alt="right arrow" height="46" width="46"></th>
<th>In Standard Form</th>
<th>a, b and c</th>
</tr>
<tr style="text-align:center;">
<td nowrap="nowrap"><b>x<sup>2</sup> = 3x 1</b></td>
<td>Move all terms to left hand side</td>
<td nowrap="nowrap"><b>x<sup>2</sup> 3x + 1 = 0</b></td>
<td>a=1, b=3, c=1</td>
</tr>
<tr style="text-align:center;">
<td nowrap="nowrap"><b>2(w<sup>2</sup> 2w) = 5</b></td>
<td><a href="expanding.html">Expand</a> (undo the <a href="brackets.html">brackets</a>),<br>
and move 5 to left</td>
<td nowrap="nowrap"><b>2w<sup>2</sup> 4w 5 = 0</b></td>
<td>a=2, b=4, c=5</td>
</tr>
<tr style="text-align:center;">
<td nowrap="nowrap"><b>z(z1) = 3</b></td>
<td>Expand, and move 3 to left</td>
<td nowrap="nowrap"><b>z<sup>2</sup> z 3 = 0</b></td>
<td>a=1, b=1, c=3</td>
</tr>
</tbody></table>
</div>
<p>&nbsp;</p>
<h2>How To Solve Them?</h2>
<div class="words">
<p>The "<b>solutions</b>" to the Quadratic Equation are where it is <b>equal to zero</b>.</p>
<p>They are also called "<b>roots</b>", or sometimes "<b>zeros</b>"</p>
</div>
<p style="float:left; margin: 0 10px 5px 0;"><img src="images/quadratic-graph.svg" alt="Quadratic Graph" height="140" width="175"></p>
<p>&nbsp;</p>
<p>There are usually 2 solutions (as shown in this graph).</p>
<p>&nbsp;</p>
<p>And there are a few different ways to find the solutions:</p>
<div style="clear:both"></div>
<div class="dotpoint"> We can <a href="factoring-quadratics.html">Factor the Quadratic</a> (find what to multiply to make the Quadratic Equation) </div>
<div class="dotpoint"> Or we can <a href="completing-square.html">Complete the Square</a></div>
<div class="dotpoint"> Or we can use the special <b>Quadratic Formula</b>:
<p class="center"><img src="images/quadratic-formula.svg" alt="Quadratic Formula: x = [ -b (+-) sqrt(b^2 - 4ac) ] / 2a" height="79" width="286"></p>
<p class="center">Just plug in the values of a, b and c, and do the calculations.</p>
<p>We will look at this method in more detail now.</p>
</div>
<h2>About the Quadratic Formula</h2>
<h3>Plus/Minus</h3>
<p>First of all what is that plus/minus thing that looks like <span class="largest">± </span>?</p>
<p class="so">The <span class="large">±</span> means there are TWO answers:</p>
<p class="center larger">x = <span class="intbl"> <em>b <span class="hilite">+</span> √(b<sup>2 </sup> 4ac)</em> <strong>2a</strong> </span></p>
<p class="center larger">x = <span class="intbl"> <em>b <span class="hilite"></span> √(b<sup>2 </sup> 4ac)</em> <strong>2a</strong></span></p>
<p>Here is an example with two answers:</p>
<p class="center"><img src="images/quadratic-graph.svg" alt="Quadratic Graph" height="140" width="175"></p>
<p>But it does not always work out like that!</p>
<ul>
<li>Imagine if the curve "just touches" the x-axis.</li>
<li>Or imagine the curve is so <b>high</b> it doesn't even cross the x-axis!</li></ul>
<p>This is where the "Discriminant" helps us ...</p>
<h3>Discriminant</h3>
<p class="indent50px">Do you see <b>b<sup>2</sup> 4ac</b> in the formula above? It is called the <b>Discriminant</b>, because it can "discriminate" between the possible types of answer:</p>
<div class="bigul">
<ul>
<li class="indent50px">when <b>b<sup>2</sup> 4ac</b> is positive, we get two <a href="../numbers/real-numbers.html">Real</a> solutions</li>
<li class="indent50px">when it is zero we get just ONE real solution (both answers are the same)</li>
<li class="indent50px">when it is negative we get a pair of <a href="../numbers/complex-numbers.html">Complex</a> solutions</li>
</ul>
</div>
<p class="indent50px"><i>Complex solutions?</i> Let's talk about them after we see how to use the formula.</p>
<p>&nbsp;</p>
<h3>Using the Quadratic Formula</h3>
<p>Just put the values of a, b and c into the Quadratic Formula, and do the calculations.</p>
<div class="example">
<h3>Example: Solve 5x<sup>2</sup> + 6x + 1 = 0</h3>
<div class="tbl">
<div class="row"><span class="left">Coefficients are:</span><span class="right">a = 5, b = 6, c = 1</span></div>
<div class="row"><span class="left">Quadratic Formula:</span><span class="right"><span class="center">x = <span class="intbl">
<em>b ± √(b<sup>2 </sup> 4ac)</em>
<strong>2a</strong>
</span></span>
</span></div>
<div class="row"><span class="left">Put in a, b and c:</span><span class="right"><span class="center">x = <span class="intbl">
<em>6 ± √(6<sup>2 </sup> 4×5×1)</em>
<strong>2×5</strong>
</span></span>
</span></div>
<div class="row"><span class="left">Solve:</span><span class="right"><span class="center">x = <span class="intbl">
<em>6 ± √(36 20)</em>
<strong>10</strong>
</span></span>
</span></div>
<div class="row"><span class="left">&nbsp;</span><span class="right"><span class="center">x = <span class="intbl">
<em>6 ± √(16)</em>
<strong>10</strong>
</span></span>
</span></div>
<div class="row"><span class="left">&nbsp;</span><span class="right"><span class="center">x = <span class="intbl">
<em>6 ± 4</em>
<strong>10</strong>
</span></span>
</span></div>
<div class="row"><span class="left">&nbsp;</span><span class="right">x = 0.2 <b>or</b> 1</span></div>
</div>
<p>&nbsp;</p>
<p style="float:left; margin: 0 10px 5px 0;"><img src="images/graph-5x2p6xp1.svg" alt="5x^2+6x+1" height="" width=""></p>
<p class="larger center"><b>Answer:</b> x = 0.2 <b>or</b> x = 1</p>
<p>&nbsp;</p>
<p>And we see them on this graph.</p>
<div style="clear:both"></div>
<table style="border: 0;">
<tbody>
<tr>
<td valign="top">Check <b>-0.2</b>:</td>
<td width="20" valign="top">&nbsp;</td>
<td>5×(<b>0.2</b>)<sup>2</sup> + 6×(<b>0.2</b>) + 1<br>
= 5×(0.04) + 6×(0.2) + 1<br>
= 0.2 1.2 + 1<br>
<b>= 0</b></td>
</tr>
<tr>
<td valign="top">Check <b>-1</b>:</td>
<td valign="top">&nbsp;</td>
<td>5×(<b>1</b>)<sup>2</sup> + 6×(<b>1</b>) + 1<br>
= 5×(1) + 6×(1) + 1<br>
= 5 6 + 1<br>
<b>= 0</b></td>
</tr>
</tbody></table>
</div>
<p>&nbsp;</p>
<h3>Remembering The Formula</h3>
<p>A kind reader suggested singing it to "Pop Goes the Weasel":</p>
<div class="center80">
<table style="border: 0; margin:auto;">
<tbody>
<tr>
<td rowspan="2"><span class="times"></span> &nbsp;</td>
<td><i><b>"x is equal to minus b</b></i></td>
<td class="times" width="40">&nbsp;</td>
<td rowspan="2"><span class="times"></span> &nbsp;</td>
<td><i>"All around the mulberry bush</i></td>
</tr>
<tr>
<td><b><i>plus or minus the square root</i></b></td>
<td style="width:40px;">&nbsp;</td>
<td><i>The monkey chased the weasel</i></td>
</tr>
<tr>
<td>&nbsp;</td>
<td><b><i>of b-squared minus four a c</i></b></td>
<td style="width:40px;">&nbsp;</td>
<td>&nbsp;</td>
<td><i>The monkey thought 'twas all in fun</i></td>
</tr>
<tr>
<td>&nbsp;</td>
<td><b><i>ALL over two a"</i></b></td>
<td style="width:40px;">&nbsp;</td>
<td>&nbsp;</td>
<td><i>Pop! goes the weasel"</i></td>
</tr>
</tbody></table>
</div>
<p>Try singing it a few times and it will get stuck in your head!</p>
<p>Or you can remember this story:</p>
<div class="center80">
<p class="center">x = <span class="intbl">
<em>b ± √(b<sup>2 </sup> 4ac)</em>
<strong>2a</strong>
</span></p>
<p class="center"><i>"A negative boy was thinking yes or no about going to a party,<br>
at the party he talked to a square boy but not to the 4 awesome chicks.<br>
It was all over at 2 am.</i>"</p>
</div>
<h2>Complex Solutions?</h2>
<p>When the Discriminant (the value <b>b<sup>2</sup> 4ac</b>) is negative we get a pair of <a href="../numbers/complex-numbers.html">Complex</a> solutions ... what does that mean?</p>
<p>It means our answer will include <a href="../numbers/imaginary-numbers.html">Imaginary Numbers</a>. Wow!</p>
<div class="example">
<h3>Example: Solve 5x<sup>2</sup> + 2x + 1 = 0</h3>
<div class="tbl">
<div class="row"><span class="left"><b>Coefficients</b> are<b>:</b></span><span class="right">a=5, b=2, c=1</span></div>
<div class="row"><span class="left">Note that the <b>Discriminant</b> is negative:</span><span class="right">b<sup>2</sup> 4ac = 2<sup>2</sup> 4×5×1<br>
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; = <b>16</b></span></div>
<div class="row"><span class="left">Use the <b>Quadratic Formula:</b></span><span class="right"><span class="center">x = <span class="intbl">
<em>2 ± √(16)</em>
<strong>10</strong>
</span></span>
</span></div>
<p><em>√(16)</em>
= 4<b>i</b><br>
(where <b>i</b> is the imaginary number √1)</p>
<div class="row"><span class="left">So:</span><span class="right"><span class="center">x = <span class="intbl">
<em>2 ± 4<b>i</b></em>
<strong>10</strong>
</span></span>
</span></div>
</div><p>&nbsp;</p>
<p style="float:left; margin: 0 10px 5px 0;"><img src="images/graph-5x2p2xp1.gif" alt="5x^2+6x+1" height="181" width="178"></p>
<p class="larger center"><b>Answer:</b> x = 0.2 ± 0.4<b>i</b></p>
<p>&nbsp;</p>
<p>The graph does not cross the x-axis. That is why we ended up with complex numbers.</p>
<div style="clear:both"></div>
</div>
<p>In a way it is easier: we don't need more calculation, we leave it as <span class="larger">0.2 ± 0.4<b>i</b></span>.</p>
<div class="example">
<h3>Example: Solve x<sup>2</sup> 4x + 6.25 = 0</h3>
<div class="tbl">
<div class="row"><span class="left"><b>Coefficients</b> are<b>:</b></span><span class="right">a=1, b=4, c=6.25</span></div>
<div class="row"><span class="left">Note that the <b>Discriminant</b> is negative:</span><span class="right">b<sup>2</sup> 4ac = (4)<sup>2</sup> 4×1×6.25<br>
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; = <b>9</b></span></div>
<div class="row"><span class="left">Use the <b>Quadratic Formula:</b></span><span class="right"><span class="center">x = <span class="intbl"> <em>(4) ± √(9)</em> <strong>2</strong> </span></span> </span></div>
<p><em>√(9)</em> = 3<b>i</b><br>
(where <b>i</b> is the imaginary number √1)</p>
<div class="row"><span class="left">So:</span><span class="right"><span class="center">x = <span class="intbl"> <em>4 ± 3<b>i</b></em> <strong>2</strong> </span></span> </span></div>
</div>
<p>&nbsp;</p>
<p style="float:left; margin: 0 10px 5px 0;"><img src="images/quadratic-graph-complex-a.svg" alt="Quadratic Graph with Cmplex Roots" height="140" width="175"></p>
<p class="larger center"><b>Answer:</b> x = 2 ± 1.5<b>i</b></p>
<p>&nbsp;</p>
<p>The graph does not cross the x-axis. That is why we ended up with complex numbers.</p>
<div style="clear:both"></div>
<p style="float:left; margin: 0 10px 5px 0;"><img src="images/quadratic-graph-complex.svg" alt="Quadratic Graph with Cmplex Roots" height="140" width="175"></p>
<p>BUT an upside-down mirror image of our equation does cross the x-axis at <span class="larger center">2 ± 1.5</span> (note: missing the <b>i</b>).</p>
<p>Just an interesting fact for you!</p>
<p><br></p>
<p><br></p>
<div style="clear:both"></div>
</div>
<p>&nbsp;</p>
<h2>Summary</h2>
<ul class="larger">
<li>Quadratic Equation in Standard Form: ax<sup>2</sup> + bx + c = 0</li>
<li>Quadratic Equations can be <a href="factoring-quadratics.html">factored</a></li>
<li>Quadratic Formula: <span class="center">x = <span class="intbl">
<em>b ± √(b<sup>2 </sup> 4ac)</em>
<strong>2a</strong>
</span></span></li>
<li>When the Discriminant (<b>b<sup>2</sup>4ac</b>) is:
<ul>
<li>positive, there are 2 real solutions</li>
<li>zero, there is one real solution</li>
<li>negative, there are 2 complex solutions</li>
</ul></li>
</ul><p>&nbsp;</p>
<div class="questions">360, 361, 1201, 1202, 2333, 2334, 3894, 3895, 2335, 2336</div>
<div class="related">
<a href="../quadratic-equation-solver.html">Quadratic Equation Solver</a>
<a href="factoring-quadratics.html">Factoring Quadratics</a>
<a href="completing-square.html">Completing the Square</a>
<a href="quadratic-equation-graphing.html">Graphing Quadratic Equations</a>
<a href="quadratic-equation-real-world.html">Real World Examples of Quadratic Equations</a>
<a href="quadratic-equation-derivation.html">Derivation of Quadratic Equation</a>
<a href="index.html">Algebra Index</a>
</div>
<!-- #EndEditable -->
</article>
<div id="adend" class="centerfull noprint"></div>
<footer id="footer" class="centerfull noprint"></footer>
<div id="copyrt">Copyright © 2021 MathsIsFun.com</div>
</div>
</body><!-- #EndTemplate -->
<!-- Mirrored from www.mathsisfun.com/algebra/quadratic-equation.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:37:02 GMT -->
</html>