lkarch.org/tools/mathisfun/www.mathsisfun.com/algebra/quadratic-equation-graphing.html
Lucas Kent e39465ad2f Changes to be committed:
new file:   Files/flashplayer_32_sa.exe
	new file:   favicon.ico
	new file:   globe.gif
	new file:   imgs/download.png
	new file:   imgs/zuck.jpg
	new file:   index.html
	new file:   other.ico
	new file:   script.js
	new file:   site.webmanifest
	new file:   sitemap.html
	new file:   styles/backround.css
	new file:   styles/border.css
	new file:   styles/fonts/Titillium_Web/OFL.txt
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf
	new file:   styles/fonts/webfontkit-20221027-163353/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2
	new file:   styles/fonts/webfontkit-20221027-165950/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2
	new file:   styles/style.css
	new file:   tools/2048/.gitignore
	new file:   tools/2048/.jshintrc
	new file:   tools/2048/CONTRIBUTING.md
	new file:   tools/2048/LICENSE.txt
	new file:   tools/2048/README.md
	new file:   tools/2048/Rakefile
	new file:   tools/2048/favicon.ico
	new file:   tools/2048/index.html
	new file:   tools/2048/js/animframe_polyfill.js
	new file:   tools/2048/js/application.js
	new file:   tools/2048/js/bind_polyfill.js
	new file:   tools/2048/js/classlist_polyfill.js
	new file:   tools/2048/js/game_manager.js
	new file:   tools/2048/js/grid.js
	new file:   tools/2048/js/html_actuator.js
	new file:   tools/2048/js/keyboard_input_manager.js
	new file:   tools/2048/js/local_storage_manager.js
	new file:   tools/2048/js/tile.js
    new file:   tools/2048/meta/apple-touch-icon.png
	new file:   tools/webretro/cores/neocd_libretro.js
	new file:   tools/webretro/cores/neocd_libretro.wasm
	new file:   tools/webretro/cores/nestopia_libretro.js
	new file:   tools/webretro/cores/nestopia_libretro.wasm
	new file:   tools/webretro/cores/o2em_libretro.js
	new file:   tools/webretro/cores/o2em_libretro.wasm
	new file:   tools/webretro/cores/opera_libretro.js
	new file:   tools/webretro/cores/opera_libretro.wasm
2022-11-02 08:40:01 -04:00

206 lines
9.5 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html lang="en"><!-- #BeginTemplate "/Templates/Advanced.dwt" --><!-- DW6 -->
<!-- Mirrored from www.mathsisfun.com/algebra/quadratic-equation-graphing.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:37:06 GMT -->
<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
<!-- #BeginEditable "doctitle" -->
<title>Graphing Quadratic Equations</title>
<!-- #EndEditable -->
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
<meta name="HandheldFriendly" content="true">
<meta name="referrer" content="always">
<link rel="stylesheet" type="text/css" href="../style3.css">
<script src="../main3.js"></script>
</head>
<body id="bodybg" class="adv">
<div class="bg">
<div id="stt"></div>
<header>
<div id="hdr"></div>
<div id="logo"><a href="../index.html"><img src="../images/style/logo.svg" alt="Math is Fun"></a></div>
<div id="advText">Advanced</div>
<div id="gtran">
<script>document.write(getTrans());</script>
</div>
<div id="adTopOuter" class="centerfull noprint">
<div id="adTop">
<script>document.write(getAdTop());</script>
</div>
</div>
<div id="adHide">
<div id="showAds1"><a href="javascript:showAds()">Show Ads</a></div>
<div id="hideAds1"><a href="javascript:hideAds()">Hide Ads</a><br>
<a href="../about-ads.html">About Ads</a></div>
</div>
</header>
<nav>
<div id="menuWide" class="menu">
<script>document.write(getMenu(0));</script>
</div>
<div id="linkto">
<div id="linktort">
<script>document.write(getLinks());</script>
</div>
</div>
<div id="search" role="search">
<script>document.write(getSearch());</script>
</div>
<div id="menuSlim" class="menu">
<script>document.write(getMenu(1));</script>
</div>
<div id="menuTiny" class="menu">
<script>document.write(getMenu(2));</script>
</div>
</nav>
<div id="extra"></div>
</div>
<article id="content" role="main">
<!-- #BeginEditable "Body" -->
<h1 class="center">Graphing Quadratic Equations</h1>
<p class="center"><img src="images/quadratic-equation.svg" alt="Quadratic Equation"><br>
A <a href="quadratic-equation.html">Quadratic Equation</a> in Standard Form<br>
(<b>a</b>, <b>b</b>, and <b>c</b> can have any value, except that <b>a</b> can't be 0.)</p>
<p>Here is an example:</p>
<p class="center"><img src="images/quadratic-equation-reason.svg" alt="Quadratic Equation"></p>
<h2>Graphing</h2>
<p>You can graph a Quadratic Equation using the <a href="../data/function-grapher.html">Function Grapher</a>, but to <b>really understand</b> what is going on, you can make the graph yourself. Read On!</p>
<h2>The Simplest Quadratic</h2>
<p>The simplest Quadratic Equation is:</p>
<p class="largest" align="center">f(x) = x<sup>2</sup></p>
<p>And its graph is simple too:</p>
<p class="center"><img src="../sets/images/function-square.svg" alt="Square function"></p>
<p class="center"><span class="larger">This is the curve f(x) = x<sup>2</sup></span><br>
It is a <a href="../geometry/parabola.html">parabola</a>.</p>
<p>Now let us see what happens when we introduce the <span class="large">"a"</span> value:</p>
<p class="center"><span class="largest">f(x) = ax<sup>2</sup></span></p>
<p class="center"><img src="images/graph-ax2.gif" alt="ax^2" height="193" width="177"></p>
<ul>
<li>Larger values of <b>a</b> squash the curve inwards</li>
<li>Smaller values of <b>a</b> expand it outwards</li>
<li>And negative values of <b>a</b> flip it upside down</li>
</ul>
<p class="center">&nbsp;</p>
<table style="border: 0; margin:auto;">
<tbody>
<tr>
<td>
<a href="quadratic-equation-graph.html"><img src="images/quadratic-graph.svg" alt="Quadratic Graph"></a>
</td>
<td>&nbsp;</td>
<td>
<h2>Play With It</h2>
<p>Now is a good time to play with the<br>
"<a href="quadratic-equation-graph.html">Quadratic Equation Explorer</a>" so you can<br>
see what different values of <b>a</b>, <b>b</b> and <b>c</b> do.</p>
</td>
</tr>
</tbody></table>
<h2>The "General" Quadratic</h2>
<p>Before graphing we <b>rearrange</b> the equation, from this:</p>
<p class="center"><span class="largest">f(x) = ax<sup>2</sup> + bx + c</span></p>
<p>To this:</p>
<p class="center"><span class="largest">f(x) = a(x-h)<sup>2</sup> + k</span></p>
<p>Where:</p>
<ul>
<div class="bigul">
<li>h = b/2a</li>
<li>k = <i><b>f( </b></i>h <i><b>)</b></i></li>
</div>
</ul>
<p>In other words, calculate <b>h</b> (= b/2a), then find <b>k</b> by calculating the whole equation for <b>x=h</b></p>
<h2>But Why?</h2>
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/quadratic-vertex.svg" alt="quadratic vertex"></p>
<p>The wonderful thing about this new form is that <span class="large">h</span> and <span class="large">k</span> show us the very lowest (or very highest) point, called the <b>vertex</b>:</p>
<p>And also the curve is <a href="../geometry/symmetry-reflection.html">symmetrical</a> (mirror image) about the <b>axis</b> that passes through <b>x=h</b>, making it easy to graph</p>
<p>&nbsp;</p>
<h3>So ...</h3>
<ul>
<li><b>h</b> shows us how far left (or right) the curve has been shifted from x=0</li>
<li><b>k</b> shows us how far up (or down) the curve has been shifted from y=0</li>
</ul>
<p>Lets see an example of how to do this:</p>
<div class="example">
<h3>Example: Plot f(x) = 2x<sup>2</sup> 12x + 16</h3>
<div class="example2"></div>
<p>First, let's note down:</p>
<ul>
<li><b>a = 2, </b></li>
<li><b>b = 12, </b>and</li>
<li><b>c = 16</b></li>
</ul>
<p>Now, what do we know?</p>
<ul>
<li>a is positive, so it is an "upwards" graph ("U" shaped)</li>
<li>a is 2, so it is a little "squashed" compared to the <b>x<sup>2 </sup></b>graph</li>
</ul>
<p>Next, let's calculate h:</p>
<div class="so">h = b/2a = (12)/(2x2) = <b>3</b></div>
<p>And next we can calculate k (using h=3):</p>
<div class="so">k = <i><b>f(</b></i>3<i><b>)</b></i> = 2(3)<sup>2</sup> 12·3 + 16 = 1836+16 = <b>2</b></div>
<p>So now we can plot the graph (with real understanding!):</p>
<p class="center"><img src="images/graph-2x2m12xp16.gif" alt="2x^2-12x+16" height="163" width="515"></p>
<p class="center">We also know: the <b>vertex</b> is (3,2), and the <b>axis</b> is x=3</p>
<div class="example2"></div>
<div class="example2"></div>
</div>
<h2>From A Graph to The Equation</h2>
<p>What if we have a graph, and want to find an equation?</p>
<div class="example">
<h3>Example: you have just plotted some interesting data, and it looks Quadratic:</h3>
<p class="center"><img src="images/graph-quadratic-data.gif" alt="quadratic data" height="122" width="181"></p>
<p>Just knowing those two points we can come up with an equation.</p>
<p>Firstly, we know <b>h</b> and <b>k</b> (at the vertex):</p>
<p class="center larger">(h, k) = (1, 1)</p>
<p>So let's put that into this form of the equation:</p>
<p class="center"><span class="larger">f(x) = a(x-h)<sup>2</sup> + k</span></p>
<p class="center"><span class="larger">f(x) = a(x1)<sup>2</sup> + 1</span></p>
<p>Then we calculate "a":</p>
<div class="tbl">
<div class="row"><span class="left">We know the point <b>(0, 1.5)</b> so:</span><span class="right">f(0) = 1.5</span></div>
<div class="row"><span class="left">And <b>a(x1)<sup>2</sup> + 1</b> at x=0 is:</span><span class="right">f(0) = a(01)<sup>2</sup> + 1</span></div>
<div class="row"><span class="left">They are both <b>f(0)</b> so make them equal:</span><span class="right"> a(01)<sup>2</sup> + 1 = 1.5</span></div>
<div class="row"><span class="left">Simplify:</span><span class="right">a + 1 = 1.5</span></div>
<div class="row"><span class="left">&nbsp;</span><span class="right">a = 0.5</span></div>
</div>
<div class="example2"></div>
<p>And so here is the resulting Quadratic Equation:</p>
<p class="center"><span class="large">f(x) = 0.5(x1)<sup>2</sup> + 1</span></p>
<p>&nbsp;</p>
<p>Note: This may not be the <b>correct</b> equation for the data, but its a good model and the best we can come up with.</p>
</div>
<p>&nbsp;</p>
<div class="questions">
<script>getQ(567,7335,7336,7337,7338,1207,2443,2444,2445,2447);
</script>&nbsp; </div>
<div class="related">
<a href="quadratic-equation.html">Quadratic Equations</a>
<a href="factoring-quadratics.html">Factoring Quadratics</a>
<a href="completing-square.html">Completing the Square</a>
<a href="quadratic-equation-real-world.html">Real World Examples of Quadratic Equations</a>
<a href="quadratic-equation-derivation.html">Derivation of Quadratic Equation Formula</a>
<a href="index.html">Algebra Index</a>
</div>
<!-- #EndEditable -->
</article>
<div id="adend" class="centerfull noprint">
<script>document.write(getAdEnd());</script>
</div>
<footer id="footer" class="centerfull noprint">
<script>document.write(getFooter());</script>
</footer>
<div id="copyrt">
Copyright © 2020 MathsIsFun.com
</div>
<script>document.write(getBodyEnd());</script>
</body><!-- #EndTemplate -->
<!-- Mirrored from www.mathsisfun.com/algebra/quadratic-equation-graphing.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:37:07 GMT -->
</html>