Lucas Kent e39465ad2f Changes to be committed:
new file:   Files/flashplayer_32_sa.exe
	new file:   favicon.ico
	new file:   globe.gif
	new file:   imgs/download.png
	new file:   imgs/zuck.jpg
	new file:   index.html
	new file:   other.ico
	new file:   script.js
	new file:   site.webmanifest
	new file:   sitemap.html
	new file:   styles/backround.css
	new file:   styles/border.css
	new file:   styles/fonts/Titillium_Web/OFL.txt
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf
	new file:   styles/fonts/webfontkit-20221027-163353/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2
	new file:   styles/fonts/webfontkit-20221027-165950/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2
	new file:   styles/style.css
	new file:   tools/2048/.gitignore
	new file:   tools/2048/.jshintrc
	new file:   tools/2048/CONTRIBUTING.md
	new file:   tools/2048/LICENSE.txt
	new file:   tools/2048/README.md
	new file:   tools/2048/Rakefile
	new file:   tools/2048/favicon.ico
	new file:   tools/2048/index.html
	new file:   tools/2048/js/animframe_polyfill.js
	new file:   tools/2048/js/application.js
	new file:   tools/2048/js/bind_polyfill.js
	new file:   tools/2048/js/classlist_polyfill.js
	new file:   tools/2048/js/game_manager.js
	new file:   tools/2048/js/grid.js
	new file:   tools/2048/js/html_actuator.js
	new file:   tools/2048/js/keyboard_input_manager.js
	new file:   tools/2048/js/local_storage_manager.js
	new file:   tools/2048/js/tile.js
    new file:   tools/2048/meta/apple-touch-icon.png
	new file:   tools/webretro/cores/neocd_libretro.js
	new file:   tools/webretro/cores/neocd_libretro.wasm
	new file:   tools/webretro/cores/nestopia_libretro.js
	new file:   tools/webretro/cores/nestopia_libretro.wasm
	new file:   tools/webretro/cores/o2em_libretro.js
	new file:   tools/webretro/cores/o2em_libretro.wasm
	new file:   tools/webretro/cores/opera_libretro.js
	new file:   tools/webretro/cores/opera_libretro.wasm
2022-11-02 08:40:01 -04:00

377 lines
20 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html lang="en"><!-- #BeginTemplate "/Templates/Advanced.dwt" --><!-- DW6 -->
<!-- Mirrored from www.mathsisfun.com/algebra/factoring-quadratics.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:37:02 GMT -->
<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
<!-- #BeginEditable "doctitle" -->
<title>Factoring Quadratics</title>
<meta name="Description" content="Math explained in easy language, plus puzzles, games, quizzes, worksheets and a forum. For K-12 kids, teachers and parents.">
<!-- #EndEditable -->
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
<meta name="HandheldFriendly" content="true">
<meta name="referrer" content="always">
<link rel="preload" href="../images/style/font-champ-bold.ttf" as="font" type="font/ttf" crossorigin="">
<link rel="preload" href="../style4.css" as="style">
<link rel="preload" href="../main4.js" as="script">
<link rel="stylesheet" href="../style4.css">
<script src="../main4.js" defer="defer"></script>
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async="" src="https://www.googletagmanager.com/gtag/js?id=UA-29771508-1"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'UA-29771508-1');
</script>
</head>
<body id="bodybg" class="adv">
<div id="stt"></div>
<div id="adTop"></div>
<header>
<div id="hdr"></div>
<div id="tran"></div>
<div id="adHide"></div>
<div id="cookOK"></div>
</header>
<div class="mid">
<nav>
<div id="menuWide" class="menu"></div>
<div id="logo"><a href="../index.html"><img src="../images/style/logo-adv.svg" alt="Math is Fun Advanced"></a></div>
<div id="search" role="search"></div>
<div id="linkto"></div>
<div id="menuSlim" class="menu"></div>
<div id="menuTiny" class="menu"></div>
</nav>
<div id="extra"></div>
<article id="content" role="main">
<!-- #BeginEditable "Body" -->
<h1 class="center">Factoring Quadratics</h1><br>
<div class="center"><img src="images/quadratic-equation.svg" alt="Quadratic Equation" height="33" width="301"><br>
<a href="quadratic-equation.html">A Quadratic Equation</a> in Standard Form<br>
(<b>a</b>, <b>b</b>, and <b>c</b> can have any value, except that <b>a</b> can't be 0.) </div>
<p>&nbsp;</p>
<p>"Factoring" (or "Factorising" in the UK) a Quadratic is:</p>
<p class="center larger">finding what to multiply to get the Quadratic</p>
<div class="words">
<p>It is called "Factoring" because we find the factors (a factor is something we multiply by)</p>
</div>
<div class="example">
<h3>Example: <b>(x+4)</b> and <b>(x1)</b> are factors of <b>x<sup>2</sup> + 3x 4</b> </h3>
<p class="center"><img src="images/expand-vs-factor-quadratic.svg" alt="expand vs factor quadratic" height="95" width="282"></p>
<p>Let us "expand"<b> (x+4)</b> and <b>(x1) </b>to be sure:</p>
<div class="tbl">
<div class="row"><span class="left"><span class="large">(x+4)(x1)&nbsp;</span></span><span class="right"><span class="large"> = x(x1) + 4(x1)</span></span></div>
<div class="row"><span class="left">&nbsp;</span><span class="right"><span class="large">= x<sup>2</sup> x + 4x 4</span></span></div>
<div class="row"><span class="left">&nbsp;</span><span class="right"><span class="large">= x<sup>2</sup> + 3x 4 <img src="../images/style/yes.svg" alt="yes" height="30" width="30"></span></span></div>
</div>
<p>Yes, <b>(x+4)</b> and <b>(x1)</b> are definitely factors of <b>x<sup>2</sup> + 3x 4</b></p>
</div>
<p>Did you see that Expanding and Factoring are opposites?</p>
<p class="center"><img src="images/expand-vs-factor-quadratic.svg" alt="expand vs factor quadratic" height="95" width="282"></p>
<p>Expanding is usually easy, but Factoring can often be <b>tricky</b>.</p>
<p class="center"><img src="images/factor-cake.gif" alt="factoring cake" height="55" width="219"><br>
It is like trying to find which ingredients<br>
went into a cake to make it so delicious.<br>
<span class="large">It can be hard to figure out! </span></p>
<p>OK, let's try an example where we <b>don't know</b> the factors yet:</p>
<h2>Common Factor</h2>
<p>First we can check for any <b>common factors</b>.</p>
<div class="example">
<h3>Example: what are the factors of <span class="large">6x<sup>2</sup> 2x = 0</span> ?</h3>
<p><b>6</b> and <b>2</b> have a common factor of <b>2</b>:</p>
<p class="center large">2(3x<sup>2</sup> x) = 0</p>
<p>And <b>x<sup>2</sup></b> and <b>x</b> have a common factor of <b>x</b>:</p>
<p class="center large">2x(3x 1) = 0</p>
<p>And we have done it! The factors are <b>2x</b> and <b>3x 1</b>,</p>
<p>&nbsp;</p>
<p>We can now also find the <b>roots</b> (where it equals zero):</p>
<ul>
<li>2x is 0 when <b>x = 0</b></li>
<li>3x 1 is zero when <b>x = <span class="intbl"><em>1</em><strong>3</strong></span></b></li>
</ul>
<p>And this is the graph (see how it is zero at x=0 and x=<span class="intbl"><em>1</em><strong>3</strong></span>):</p>
<p class="center"><img src="images/6x2-2x.gif" alt="graph of 6x^2 - 2x" height="200" width="252"></p>
</div>
<p>But it is not always that easy ...</p>
<h2>Guess and Check</h2>
<div class="example">
<h3>Example: what are the factors of <span class="large">2x<sup>2</sup> + 7x + 3</span> ?</h3>
<p>No common factors.</p>
<p>Maybe we can <b>guess </b>an answer? Then check if we are right ... we may get lucky!</p>
<p>&nbsp;</p>
<p>Let's guess (2x+3)(x+1):</p>
<p class="center"><span class="large">(2x+3)(x+1) = 2x<sup>2</sup> + 2x + 3x + 3<br>
= 2x<sup>2</sup> + 5x + 3 </span>(Close but <b>WRONG</b>)</p>
<p>How about (2x+7)(x1):</p>
<p class="center"><span class="large">(2x+7)(x1) = 2x<sup>2</sup> 2x + 7x 7<br>
= 2x<sup>2</sup> + 5x 7 </span><span class="large"> </span><b>(WRONG AGAIN)</b></p>
<p>OK, how about (2x+9)(x1):</p>
<p class="center"><span class="large">(2x+9)(x1) = 2x<sup>2</sup> 2x + 9x 9<br>
= 2x<sup>2</sup> + 7x 9 </span><span class="large"> </span><b>(WRONG AGAIN!)</b></p>
<p>We could be guessing for a <b>long time</b> before we get lucky.</p>
</div>
<p>That is not a very good method. So let us try something else.</p>
<h2>A Method For Simple Cases</h2>
<p>There is a method for simple cases.</p>
<p>With the quadratic equation in this form:</p>
<p class="center"><img src="images/quadratic-equation.svg" alt="Quadratic Equation" height="33" width="301"></p>
<p><b>Step 1</b>: Find two numbers that multiply to give <span class="large">ac</span> (in other words a times c), and add to give <span class="large">b</span>.</p>
<div class="example">
<p>Example: <span class="large">2x<sup>2</sup> + 7x + 3</span></p>
<p>ac is 2×3 = <b>6</b> and b is <b>7</b></p>
<p>So we want two numbers that multiply together to make 6, and add up to 7</p>
<p>In fact <b>6</b> and <b>1</b> do that (6×1=6, and 6+1=7)</p>
</div>
<div class="center80">
<p>How do we find 6 and 1?</p>
<p>It helps to list <a href="../numbers/factors-all-tool.html"> the factors</a> of ac=<b>6</b>, and then try adding some to get b=<b>7</b>.</p>
<p>Factors of 6 include 1, 2, 3 and 6.</p>
<p>Aha! 1 and 6 add to 7, and 6×1=6.</p>
</div>
<p><b>Step 2</b>: Rewrite the middle with those numbers:</p>
<div class="example">
<p>Rewrite 7x with <b>6</b>x and <b>1</b>x:</p>
<p class="center large">2x<sup>2</sup> + <b>6x + x</b> + 3</p>
</div>
<p><b>Step 3</b>: Factor the first two and last two terms separately:</p>
<div class="example">
<p>The first two terms <span class="large">2x<sup>2</sup> + 6x</span> factor into <span class="large">2x(x+3)</span></p>
<p>The last two terms <span class="large">x+3</span> don't actually change in this case</p>
<p>So we get:</p>
<p class="center large">2x(x+3) + (x+3)</p>
</div>
<p><b>Step 4</b>: If we've done this correctly, our two new terms should have a clearly visible common factor.</p>
<div class="example">
<p>In this case we can see that <span class="large">(x+3)</span> is common to both terms, so we can go:</p>
<div class="tbl">
<div class="row"><span class="left">Start with:</span><span class="right">2x(x+3) + (x+3)</span></div>
<div class="row"><span class="left">Which is:</span><span class="right">2x(x+3) + 1(x+3) </span></div>
<div class="row"><span class="left">And so:</span><span class="right"><b>(2x+1)(x+3)</b></span></div>
</div> <p>Done!</p>
<p>Check: (2x+1)(x+3) = 2x<sup>2</sup> + 6x + x + 3 = <b>2x<sup>2</sup> + 7x + 3</b> (Yes)</p>
</div>
<p>&nbsp;</p>
<p><b>Let's see Steps 1 to 4 again, in one go</b>:</p>
<div class="example">
<table style="border: 0; margin:auto;">
<tbody>
<tr>
<td class="large" align="center"><span><b>2x<sup>2</sup> + 7x + 3</b></span></td>
</tr>
<tr>
<td class="large" align="center"><span>2x<sup>2</sup> + </span><span class="hilite">6x + x</span><span class="large"> + 3</span></td>
</tr>
<tr>
<td class="large" align="center"><span class="hilite">2x(x+3)</span> + <span class="hilite">(x+3)</span></td>
</tr>
<tr>
<td class="large" align="center"><span class="hilite">2x</span><span>(x+3) + </span><span class="hilite">1</span><span class="large">(x+3) </span></td>
</tr>
<tr>
<td class="large" align="center"><span><b>(2x+1)(x+3)</b></span></td>
</tr>
</tbody></table>
</div>
<h3>OK, let us try another example:</h3>
<div class="example">
<h3>Example: <span class="large">6x<sup>2</sup> + 5x 6</span></h3>
<p><b>Step 1</b>: ac is 6×(6) = <b>36</b>, and b is <b>5</b></p>
<p>List the positive <a href="../numbers/factors-all-tool.html">factors</a> of ac = <b>36</b>: 1, 2, 3, 4, 6, 9, 12, 18, 36</p>
<p>One of the numbers has to be negative to make 36, so by playing with a few different numbers I find that 4 and 9 work nicely:</p>
<p class="center large">4×9 = 36 and 4+9 = 5</p>
<p>&nbsp;</p>
<p><b>Step 2</b>: Rewrite <b>5x</b> with 4x and 9x:</p>
<p class="center"><span class="large">6x<sup>2</sup> 4x + 9x 6</span></p>
<p><b>Step 3</b>: Factor first two and last two:</p>
<p class="center"><span class="large">2x(3x 2) + 3(3x 2)</span></p>
<p><b>Step 4</b>: Common Factor is (3x 2):</p>
<p class="center larger">(2x+3)(3x 2)</p>
<p>&nbsp;</p>
<p>Check: (2x+3)(3x 2) = 6x<sup>2</sup> 4x + 9x 6 = <b>6x<sup>2</sup> + 5x 6</b> (Yes)</p>
</div>
<p>&nbsp;</p>
<h3>Finding Those Numbers
</h3>
<p>The hardest part is finding two numbers that multiply to give <span class="large">ac</span>, and add to give <span class="large">b</span>.</p>
<p>It is partly guesswork, and it helps to <b><a href="../numbers/factors-all-tool.html">list out all the factors</a></b>.</p>
<p>Here is another example to help you:</p>
<div class="example">
<h3>Example: ac = 120 and b = 7</h3>
<p>What two numbers <b>multiply to 120</b> and <b>add to 7</b> ?</p>
<p>The factors of 120 are (plus and minus):</p>
<p class="center">1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 30, 40, 60, and 120</p>
<p>We can try pairs of factors (start near the middle!) and see if they add to 7:</p>
<ul>
<li>10 x 12 = 120, and 10+12 = 2 (no)</li>
<li>8 x 15 = 120 and 8+15 = 7 (YES!)</li>
</ul>
</div>
<h2>Get Some Practice</h2>
<div class="center80">
<p class="center">You can <a href="quadratic-factoring-practice.html">practice simple quadratic factoring</a>.</p>
</div><h2>Why Factor?</h2>
<p>Well, one of the big benefits of factoring is that we can find the <b>roots</b> of the quadratic equation (where the equation is zero).</p>
<p>All we need to do (after factoring) is find where each of the two factors becomes zero</p>
<div class="example">
<h3>Example: what are the roots (zeros) of<span class="large"> 6x<sup>2</sup> + 5x 6 </span>?</h3>
<p>We already know (from above) the factors are</p>
<p class="center"><span class="large">(2x + 3)(3x 2)</span></p>
<p>And we can figure out that</p>
<p class="center">(2x + 3) is zero when <span class="large">x = 3/2</span></p>
<p class="center">(3x 2) is zero when <span class="large">x = 2/3</span></p>
<p>So the roots of <span class="large"> 6x<sup>2</sup> + 5x 6</span> are:</p>
<p class="center"><span class="larger">3/2</span> and <span class="larger">2/3</span></p>
<p>Here is a plot of <span class="large">6x<sup>2</sup> + 5x 6</span>, can you see where it equals zero?</p>
<p class="center"><img src="images/factoring-quadratics-ex.gif" alt="factoring quadratics example" height="139" width="269"></p>
<p>We can also check it using a bit of arithmetic:</p>
<p><span class="large">At x = <span class="intbl"><em>3</em><strong>2</strong></span></span>: 6(<span class="intbl"><em>3</em><strong>2</strong></span>)<sup>2</sup> + 5(<span class="intbl"><em>3</em><strong>2</strong></span>) 6 = 6×(<span class="intbl"><em>9</em><strong>4</strong></span>) <span class="intbl"><em>15</em><strong>2</strong></span> 6 = <span class="intbl"><em>54</em><strong>4</strong></span> <span class="intbl"><em>15</em><strong>2</strong></span> - 6 <b>= 0</b></p>
<p><span class="large">At x = <span class="intbl"><em>2</em><strong>3</strong></span></span>: 6(<span class="intbl"><em>2</em><strong>3</strong></span>)<sup>2</sup> + 5(<span class="intbl"><em>2</em><strong>3</strong></span>) 6 = 6×(<span class="intbl"><em>4</em><strong>9</strong></span>) + <span class="intbl"><em>10</em><strong>3</strong></span> 6 = <span class="intbl"><em>24</em><strong>9</strong></span> + <span class="intbl"><em>10</em><strong>3</strong></span> - 6 <b>= 0</b></p>
</div>
<h2><br></h2>
<h2>Graphing
</h2>
<p>We can also try <a href="../data/function-grapher.html">graphing the quadratic equation</a>. Seeing where it equals zero can give us clues.</p>
<div class="example">
<h3>Example: (continued)</h3>
<p>Starting with <span class="large">6x<sup>2</sup> + 5x 6</span> and <b>just this plot:</b></p>
<p class="center"><img src="images/factoring-quadratics-ex.gif" alt="factoring quadratics example" height="139" width="269"></p>
<p>The roots are <b>around</b> x = 1.5 and x = +0.67, so we can <b>guess</b> the roots are:</p>
<p class="center"><span class="large">3/2</span> and <span class="large">2/3</span></p>
<p>Which can help us work out the factors <b>2x + 3</b> and <b>3x 2</b></p>
<p>Always check though! The graph value of +0.67 might not really be 2/3</p>
</div>
<h2>General Solution</h2>
<p>Quadratic equations have symmetry, the left and right are like mirror images:</p>
<p class="center">
<img src="images/quadratic-mid.svg" alt="quadratic mid line" title="quadratic mid line"> </p>
<p>The midline is at <b>b/2</b>, and we can calculate the value <b>w</b> with these steps:</p>
<ul>
<li>First, "a" must be 1, if not then divide b and c by a: </li>
<ul>
<li>b = b/a, c = c/a</li></ul>
<li>mid = b/2</li>
<li>w = √(mid<sup>2</sup> c)</li>
<li>roots are at midw and mid+w</li></ul>
<div class="example">
<h3>Example:<b> x<sup>2</sup> + 3x 4</b></h3>
<p class="center">
a = 1, b = 3 and c = 4
</p>
<ul>
<li>a= 1, so we can go to next step</li>
<li>mid = <span class="intbl"><em>3</em><strong>2</strong></span></li>
<li>w = √[(<span class="intbl"><em>3</em><strong>2</strong></span>)<sup>2</sup> (4)] = √(<span class="intbl"><em>9</em><strong>4</strong></span> + 4) = √<span class="intbl"><em>25</em><strong>4</strong></span> = <b><span class="intbl"><em>5</em><strong>2</strong></span></b></li>
<li>roots are at&nbsp; <span class="intbl"><em>3</em><strong>2</strong></span><span class="intbl"><em>5</em><strong>2</strong></span> = <b>4</b> and <span class="intbl"><em>3</em><strong>2</strong></span>+<span class="intbl"><em>5</em><strong>2</strong></span> = <b>1</b> &nbsp; </li></ul>
<p>So we can factor <b>x<sup>2</sup> + 3x 4</b> into <b>(x + 4)(x </b><b> 1)&nbsp;</b></p>
</div>
<h2>Quadratic formula</h2>
<p>We can also use the <a href="quadratic-equation.html">quadratic formula</a>:</p>
<p class="center"><img src="images/quadratic-formula.svg" alt="Quadratic Formula" height="79" width="286"></p>
<p>We get two answers <span class="large">x<sub>+</sub></span> and <span class="large">x<sub></sub></span> (one is for the "+" case, and the other is for the "" case in the "±") that gets us this factoring:</p>
<p class="center larger">a(x x<sub>+</sub>)(x x<sub></sub>)</p>
<div class="example">
<h3>Example: what are the roots of<span class="large"> 6x<sup>2</sup> + 5x 6 </span>?</h3>
<p>Substitute a=6, b=5 and c=6 into the formula:</p>
<p class="center large">x = <span class="intbl"><em>b ± √(b<sup>2</sup> 4ac)</em><strong>2a</strong></span></p>
<p class="center large">= <span class="intbl"><em>5 ± √(5<sup>2</sup> 4×6×(6))</em><strong>2×6</strong></span></p>
<p class="center large">= <span class="intbl"><em>5 ± √(25 + 144)</em><strong>12</strong></span></p>
<p class="center large">= <span class="intbl"><em>5 ± √169</em><strong>12</strong></span></p>
<p class="center large">= <span class="intbl"><em>5 ± 13</em><strong>12</strong></span></p>
<p>So the two roots are:</p>
<p class="center large">x<sub>+</sub> = (5 <span class="hilite">+</span> 13) / 12 = 8/12 = 2/3,</p>
<p class="center large">x<sub></sub> = (5 <span class="hilite"></span> 13) / 12 = 18/12 = 3/2</p>
<p>(Notice that we get the same answer as when we did the factoring earlier.)</p>
<p>&nbsp;</p>
<p>Now put those values into <span class="large">a(x x<sub>+</sub>)(x x<sub></sub>)</span>:</p>
<p class="center large">6(x 2/3)(x + 3/2)</p>
<p>We can rearrange that a little to simplify it:</p>
<p class="center large">3(x 2/3) × 2(x + 3/2) = (3x 2)(2x + 3)</p>
<p>Done!</p>
</div><br><div class="questions">362, 1203, 2262, 363, 1204, 2263, 2100, 2101, 2102, 2103, 2264, 2265</div>
<div class="related">
<a href="factoring.html">Factoring - Introduction</a>
<a href="quadratic-equation.html">Quadratic Equations</a>
<a href="completing-square.html">Completing the Square</a>
<a href="quadratic-equation-graphing.html">Graphing Quadratic Equations</a>
<a href="quadratic-equation-real-world.html">Real World Examples of Quadratic Equations</a>
<a href="quadratic-equation-derivation.html">Derivation of Quadratic Equation</a>
<a href="../quadratic-equation-solver.html">Quadratic Equation Solver</a>
<a href="index.html">Algebra Index</a>
</div>
<!-- #EndEditable -->
</article>
<div id="adend" class="centerfull noprint"></div>
<footer id="footer" class="centerfull noprint"></footer>
<div id="copyrt">Copyright © 2022 Rod Pierce</div>
</div>
</body><!-- #EndTemplate -->
<!-- Mirrored from www.mathsisfun.com/algebra/factoring-quadratics.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:37:03 GMT -->
</html>