Lucas Kent e39465ad2f Changes to be committed:
new file:   Files/flashplayer_32_sa.exe
	new file:   favicon.ico
	new file:   globe.gif
	new file:   imgs/download.png
	new file:   imgs/zuck.jpg
	new file:   index.html
	new file:   other.ico
	new file:   script.js
	new file:   site.webmanifest
	new file:   sitemap.html
	new file:   styles/backround.css
	new file:   styles/border.css
	new file:   styles/fonts/Titillium_Web/OFL.txt
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf
	new file:   styles/fonts/webfontkit-20221027-163353/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2
	new file:   styles/fonts/webfontkit-20221027-165950/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2
	new file:   styles/style.css
	new file:   tools/2048/.gitignore
	new file:   tools/2048/.jshintrc
	new file:   tools/2048/CONTRIBUTING.md
	new file:   tools/2048/LICENSE.txt
	new file:   tools/2048/README.md
	new file:   tools/2048/Rakefile
	new file:   tools/2048/favicon.ico
	new file:   tools/2048/index.html
	new file:   tools/2048/js/animframe_polyfill.js
	new file:   tools/2048/js/application.js
	new file:   tools/2048/js/bind_polyfill.js
	new file:   tools/2048/js/classlist_polyfill.js
	new file:   tools/2048/js/game_manager.js
	new file:   tools/2048/js/grid.js
	new file:   tools/2048/js/html_actuator.js
	new file:   tools/2048/js/keyboard_input_manager.js
	new file:   tools/2048/js/local_storage_manager.js
	new file:   tools/2048/js/tile.js
    new file:   tools/2048/meta/apple-touch-icon.png
	new file:   tools/webretro/cores/neocd_libretro.js
	new file:   tools/webretro/cores/neocd_libretro.wasm
	new file:   tools/webretro/cores/nestopia_libretro.js
	new file:   tools/webretro/cores/nestopia_libretro.wasm
	new file:   tools/webretro/cores/o2em_libretro.js
	new file:   tools/webretro/cores/o2em_libretro.wasm
	new file:   tools/webretro/cores/opera_libretro.js
	new file:   tools/webretro/cores/opera_libretro.wasm
2022-11-02 08:40:01 -04:00

513 lines
19 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html lang="en"><!-- #BeginTemplate "/Templates/Main.dwt" --><!-- DW6 -->
<!-- Mirrored from www.mathsisfun.com/algebra/exponent-laws.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:48:19 GMT -->
<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
<!-- #BeginEditable "doctitle" -->
<title>Laws of Exponents</title>
<style>
.nthroot {font-size:75%;display:inline-block; margin-left: -0.5em; transform: translateX(0.8em) translateY(-1em);}
</style>
<!-- #EndEditable -->
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
<meta name="HandheldFriendly" content="true">
<meta name="referrer" content="always">
<link rel="preload" href="../images/style/font-champ-bold.ttf" as="font" type="font/ttf" crossorigin="">
<link rel="preload" href="../style4.css" as="style">
<link rel="preload" href="../main4.js" as="script">
<link rel="stylesheet" href="../style4.css">
<script src="../main4.js" defer="defer"></script>
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async="" src="https://www.googletagmanager.com/gtag/js?id=UA-29771508-1"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'UA-29771508-1');
</script>
</head>
<body id="bodybg">
<div id="stt"></div>
<div id="adTop"></div>
<header>
<div id="hdr"></div>
<div id="tran"></div>
<div id="adHide"></div>
<div id="cookOK"></div>
</header>
<div class="mid">
<nav>
<div id="menuWide" class="menu"></div>
<div id="logo"><a href="../index.html"><img src="../images/style/logo.svg" alt="Math is Fun"></a></div>
<div id="search" role="search"></div>
<div id="linkto"></div>
<div id="menuSlim" class="menu"></div>
<div id="menuTiny" class="menu"></div>
</nav>
<div id="extra"></div>
<article id="content" role="main">
<!-- #BeginEditable "Body" -->
<h1 class="center">Laws of Exponents</h1>
<p class="center">Exponents are also called <b>Powers</b> or <b>Indices</b></p>
<p style="float:left; margin: 0 10px 5px 0;"><img src="images/exponent-8-2.svg" alt="8 to the Power 2" height="132" width="143"></p>
<p>The exponent of a number says <b>how many times</b> to use the number in a <b>multiplication.</b></p>
<p class="larger">In this example: <b>8<sup>2</sup> = 8 × 8 = 64</b></p>
<div style="clear:both"></div>
<div class="words">In words: 8<sup>2</sup> could be called "8 to the second power", "8 to the power 2" or
simply "8 squared"</div>
<p>Try it yourself:</p>
<div class="script" style="height: 200px;">
images/exponent-calc.js
</div>
<p class="center large">So an Exponent saves us writing out lots of multiplies!</p>
<div class="example">
<h3>Example: <span class="larger">a<b><sup>7</sup></b></span></h3>
<p class="center larger">a<b><sup>7</sup></b> = a × a × a × a × a × a × a = aaaaaaa</p>
</div>
<p>Notice how we wrote the letters together to mean multiply? We will do that a lot here.</p>
<div class="example">
<h3>Example: x<sup>6</sup> = xxxxxx</h3>
</div>
<h2>The Key to the Laws</h2>
<p class="center large">Writing all the letters down is the key to understanding the Laws</p>
<div class="example">
<h3>Example: x<sup>2</sup>x<sup>3</sup> = (xx)(xxx) = xxxxx = x<sup>5</sup></h3>
<p>Which shows that <b>x<sup>2</sup>x<sup>3</sup> = x<sup>5</sup></b>, but more on that later!</p>
</div>
<p>So, when in doubt, just remember to write down all the letters (as many as the exponent tells you to) and see if you can make sense of it.</p>
<a id="ideas"></a>
<h2>All you need to know ...</h2>
<p>The "Laws of Exponents" (also called "Rules of Exponents") come from <b>three ideas</b>:</p>
<table style="border: 0; margin:auto;">
<tbody>
<tr>
<td><img src="../images/style/pencil-paper.gif" alt="pencil paper" height="35" width="39"></td>
<td>The exponent says<b> how many times</b> to use the number in a multiplication<b>.</b></td>
</tr>
<tr>
<td>&nbsp;</td>
<td>&nbsp;</td>
</tr>
<tr>
<td><img src="../images/style/turn-over.gif" alt="turn over" height="41" width="45"></td>
<td>A <b>negative exponent</b> means<b> divide</b>, because the opposite of multiplying is dividing</td>
</tr>
<tr>
<td>&nbsp;</td>
<td>&nbsp;</td>
</tr>
<tr>
<td><img src="../images/style/pie-slice.gif" alt="pie slice" height="42" width="43"></td>
<td>
<table width="100%" border="0">
<tbody>
<tr>
<td width="75%">A <a href="exponent-fractional.html">fractional exponent</a> like <b>1/n</b> means to<b> take the <a href="../numbers/nth-root.html">nth root</a></b>:</td>
<td width="25%">
x<sup>(<span class="intbl"><em>1</em><strong>n</strong></span>)</sup> =
<span class="nthroot">n</span><span style="font-size:120%;"></span><span class="overline">x</span>
</td>
</tr>
</tbody></table></td>
</tr>
</tbody></table><br>
<p class="center large">If you understand those, then you understand exponents!</p>
<p class="center">And all the laws below are based on those ideas.</p>
<h2>Laws of Exponents</h2>
<p>Here are the Laws
(explanations follow):</p>
<div class="beach">
<table align="center" width="90%" cellspacing="3" border="0">
<tbody>
<tr style="text-align:center;">
<th width="50%">Law</th>
<th width="50%">Example</th>
</tr>
<tr style="text-align:center;">
<td width="50%"><span class="large">x<sup>1</sup> = x</span></td>
<td width="50%">6<sup>1</sup> = 6</td>
</tr>
<tr style="text-align:center;">
<td width="50%"><span class="large">x<sup>0</sup> = 1</span></td>
<td width="50%">7<sup>0</sup> = 1</td>
</tr>
<tr style="text-align:center;">
<td width="50%"><span class="large">x<sup>-1</sup> = 1/x</span></td>
<td width="50%">4<sup>-1</sup> = 1/4</td>
</tr>
<tr style="text-align:center;">
<td class="large" width="50%"><br>
</td>
<td width="50%"><br>
</td>
</tr>
<tr style="text-align:center;">
<td width="50%"><span class="large">x<sup>m</sup>x<sup>n</sup> = x<sup>m+n</sup></span></td>
<td width="50%">x<sup>2</sup>x<sup>3</sup> = x<sup>2+3</sup> = x<sup>5</sup></td>
</tr>
<tr style="text-align:center;">
<td width="50%"><span class="large">x<sup>m</sup>/x<sup>n</sup> = x<sup>m-n</sup></span></td>
<td width="50%">x<sup>6</sup>/x<sup>2</sup> = x<sup>6-2</sup> = x<sup>4</sup></td>
</tr>
<tr style="text-align:center;">
<td width="50%"><span class="large">(x<sup>m</sup>)<sup>n</sup> = x<sup>mn</sup></span></td>
<td width="50%">(x<sup>2</sup>)<sup>3</sup> = x<sup>2×3</sup> = x<sup>6</sup></td>
</tr>
<tr style="text-align:center;">
<td width="50%"><span class="large">(xy)<sup>n</sup> = x<sup>n</sup>y<sup>n</sup></span></td>
<td width="50%">(xy)<sup>3</sup> = x<sup>3</sup>y<sup>3</sup></td>
</tr>
<tr style="text-align:center;">
<td width="50%"><span class="large">(x/y)<sup>n</sup> = x<sup>n</sup>/y<sup>n</sup></span></td>
<td width="50%">(x/y)<sup>2</sup> = x<sup>2</sup> / y<sup>2</sup></td>
</tr>
<tr style="text-align:center;">
<td width="50%"><span class="large">x<sup>-n</sup> = 1/x<sup>n</sup></span></td>
<td width="50%">x<sup>-3</sup> = 1/x<sup>3</sup></td>
</tr>
<tr>
<td colspan="2">And the law about Fractional Exponents:</td>
</tr>
<tr style="text-align:center;">
<td class="large" width="50%">
x<sup>m/n</sup> &nbsp;=
<span class="nthroot">n</span><span style="font-size:120%;"></span><span class="overline">x<sup>m</sup></span>
<br>
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;=
(<span class="nthroot">n</span><span style="font-size:120%;"></span><span class="overline">x</span> )<sup>m</sup>
</td>
<td class="large" width="50%">
x<sup>2/3</sup> &nbsp;=
<span class="nthroot">3</span><span style="font-size:120%;"></span><span class="overline">x<sup>2</sup></span>
<br>
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;=
(<span class="nthroot">3</span><span style="font-size:120%;"></span><span class="overline">x</span> )<sup>2</sup>
</td>
</tr>
</tbody></table>
</div>
<h2>Laws Explained</h2>
<p>The first three laws above (<span class="large">x<sup>1</sup> = x</span>, <span class="large">x<sup>0</sup> = 1</span> and <span class="large">x<sup>-1</sup> = 1/x</span>) are just part of the natural sequence of exponents. Have a look at this:</p>
<div class="simple">
<table align="center" width="60%" border="0">
<tbody>
<tr style="text-align:center;">
<th colspan="4">Example: Powers of 5</th>
</tr>
<tr>
<td style="text-align:center;">&nbsp;</td>
<td style="text-align:center;">.. etc..</td>
<td style="text-align:center;">&nbsp;</td>
<td rowspan="7" width="19%"><img src="images/larger-smaller-5.svg" alt="exponent 5x larger smaller" height="199" width="69"></td>
</tr>
<tr>
<td width="11%"><b>5<sup>2</sup></b></td>
<td width="41%"><b>1 × 5 × 5</b></td>
<td width="29%">25</td>
</tr>
<tr>
<td width="11%"><b>5<sup>1</sup></b></td>
<td width="41%"><b>1 × 5</b></td>
<td width="29%">5</td>
</tr>
<tr>
<td width="11%"><b>5<sup>0</sup></b></td>
<td width="41%"><b>1</b></td>
<td width="29%">1</td>
</tr>
<tr>
<td width="11%"><b>5<sup>-1</sup></b></td>
<td width="41%"><b>1 ÷ 5</b></td>
<td width="29%">0.2</td>
</tr>
<tr>
<td width="11%"><b>5<sup>-2</sup></b></td>
<td width="41%"><b>1 ÷ 5 ÷ 5</b></td>
<td width="29%">0.04</td>
</tr>
<tr>
<td style="text-align:center;">&nbsp;</td>
<td style="text-align:center;">.. etc..</td>
<td style="text-align:center;">&nbsp;</td>
</tr>
</tbody></table>
</div>
<p>Look at that table for a while ... notice that positive, zero or negative exponents are really part of the same pattern, i.e. 5 times larger (or 5 times smaller) depending on whether the exponent gets larger (or smaller).</p>
<h2>The law that x<sup>m</sup>x<sup>n</sup> = x<sup>m+n</sup></h2>
<p class="indent50px">With x<sup>m</sup>x<sup>n</sup>, how many times do we end up multiplying "x"? <i>Answer:</i> first "m" times, then <b>by another</b> "n" times, for a total of "m+n" times.</p>
<div class="example">
<h3>Example: x<sup>2</sup>x<sup>3</sup> = (xx)(xxx) = xxxxx = x<sup>5</sup></h3>
<p class="indent50px">So, x<sup>2</sup>x<sup>3</sup> = x<sup>(2+3)</sup> = x<sup>5</sup></p>
</div>
<h2>The law that x<sup>m</sup>/x<sup>n</sup> = x<sup>m-n</sup></h2>
<p class="indent50px">Like the previous example, how many times do we end up multiplying "x"? Answer: "m" times, then <b>reduce that</b> by "n" times (because we are dividing), for a total of "m-n" times.</p>
<div class="example">
<h3>Example: x<sup>4</sup>/x<sup>2</sup> = (xxxx) / (xx) = xx = x<sup>2</sup></h3>
<p class="indent50px">So, x<sup>4</sup>/x<sup>2</sup> = x<sup>(4-2)</sup> = x<sup>2</sup></p>
</div>
<p class="indent50px">(Remember that <b>x</b>/<b>x</b> = 1, so every time you see an <b>x</b> "above the line" and one "below the line" you can cancel them out.)</p>
<p>This law can also show you why <b>x<sup>0</sup>=1</b> :</p>
<div class="example">
<h3>Example: x<sup>2</sup>/x<sup>2</sup> = <b><b>x<sup>2-2</sup></b> = <b>x<sup>0</sup></b> =1</b></h3>
</div>
<h2>The law that (x<sup>m</sup>)<sup>n</sup> = x<sup>mn</sup></h2>
<p class="indent50px">First you multiply "m" times. Then you have <b>to do that "n" times</b>, for a total of m×n times.</p>
<div class="example">
<h3>Example: (x<sup>3</sup>)<sup>4</sup> = (xxx)<sup>4</sup> = (xxx)(xxx)(xxx)(xxx) = xxxxxxxxxxxx = x<sup>12</sup></h3>
<p class="indent50px">So (x<sup>3</sup>)<sup>4</sup> = x<sup>3×4</sup> = x<sup>12</sup></p>
</div>
<h2>The law that (xy)<sup>n</sup> = x<sup>n</sup>y<sup>n</sup></h2>
<p class="indent50px">To show how this one works, just think of re-arranging all the "x"s and "y"s as in this example:</p>
<div class="example">
<h3>Example: (xy)<sup>3</sup> = (xy)(xy)(xy) = xyxyxy = xxxyyy = (xxx)(yyy) = x<sup>3</sup>y<sup>3</sup></h3>
</div>
<h2>The law that (x/y)<sup>n</sup> = x<sup>n</sup>/y<sup>n</sup></h2>
<p class="indent50px">Similar to the previous example, just re-arrange the "x"s and "y"s</p>
<div class="example">
<h3>Example: (x/y)<sup>3</sup> = (x/y)(x/y)(x/y) = (xxx)/(yyy) = x<sup>3</sup>/y<sup>3</sup></h3>
</div>
<h2>The law that &nbsp;
x<sup>m/n</sup> &nbsp;=
<span class="nthroot">n</span><span style="font-size:110%;"></span><span class="overline">x<sup>m</sup></span>
&nbsp;=
(<span class="nthroot">n</span><span style="font-size:110%;"></span><span class="overline">x</span> )<sup>m</sup>
</h2>
<p class="indent50px">OK, this one is a little more complicated!</p>
<p class="indent50px">I suggest you read <a href="exponent-fractional.html">Fractional Exponents</a> first, so this makes more sense.</p>
<p class="indent50px">Anyway, the important idea is that:</p>
<p class="indent50px" align="center"><span class="larger">x<sup>1/<b>n</b></sup> = The <b>n-</b>th Root of x</span></p>
<p class="indent50px">And so a fractional exponent like <span class="large">4<sup>3/2</sup></span> is really saying to do a <b>cube</b> (3) and a <b>square root</b> (1/2), in any order.</p>
<p class="indent50px">Just remember from fractions that <b>m/n = m × (1/n)</b>:</p>
<div class="example">
<h3>Example:
x<sup>(<span class="intbl"><em>m</em><strong>n</strong></span>)</sup> &nbsp;=&nbsp;
x<sup>(m × <span class="intbl"><em>1</em><strong>n</strong></span>)</sup> &nbsp;=&nbsp;
(x<sup>m</sup>)<sup>1/n</sup> &nbsp;=&nbsp;
<span class="nthroot">n</span><span style="font-size:120%;"></span><span class="overline">x<sup>m</sup></span>
</h3>
</div>
<p class="indent50px">The order does not matter, so it also works for <b>m/n = (1/n) × m</b>:</p>
<div class="example">
<h3>Example:
x<sup>(<span class="intbl"><em>m</em><strong>n</strong></span>)</sup> &nbsp;=&nbsp;
x<sup>(<span class="intbl"><em>1</em><strong>n</strong></span> × m)</sup> &nbsp;=&nbsp;
(x<sup>1/n</sup>)<sup>m</sup> &nbsp;=&nbsp;
(<span class="nthroot">n</span><span style="font-size:120%;"></span><span class="overline">x</span> )<sup>m</sup>
</h3>
</div>
<h2>Exponents of Exponents ...</h2>
<p>What about this example?</p>
<p class="largest center">4<sup>3<sup>2</sup></sup></p>
<p>We do the exponent at the <b>top first</b>, so we calculate it this way:</p>
<table style="border: 0; margin:auto;">
<tbody>
<tr>
<td style="text-align:right;">Start with:</td>
<td>&nbsp;</td>
<td style="text-align:center;"><span class="large">4<sup>3<sup>2</sup></sup></span></td>
</tr>
<tr>
<td style="text-align:right;">3<sup>2</sup> = 3×3:</td>
<td>&nbsp;</td>
<td style="text-align:center;"><span class="large">4<sup>9</sup></span></td>
</tr>
<tr>
<td style="text-align:right;">4<sup>9</sup> = 4×4×4×4×4×4×4×4×4:</td>
<td>&nbsp;</td>
<td class="large" align="center">262144</td>
</tr>
</tbody></table>
<p>&nbsp;</p>
<h2>And That Is It!</h2>
<p><i>If you find it hard to remember all these rules, then remember this:</i></p>
<p class="center larger">you can work them out when you understand the<br>
<a href="#ideas">three ideas</a> near the top of this page:</p>
<ul>
<li>The exponent says<b> how many times</b> to use the number in a multiplication</li>
<li>A <b>negative exponent</b> means<b> divide</b></li>
<li>A fractional exponent like <b>1/n</b> means to<b> take the nth root</b>: &nbsp;
x<sup>(<span class="intbl"><em>1</em><strong>n</strong></span>)</sup> =
<span class="nthroot">n</span><span style="font-size:120%;"></span><span class="overline">x</span>&nbsp;
</li></ul>
<p class="center">&nbsp;</p>
<h3>Oh, One More Thing ... What if x = 0?</h3>
<table style="border: 0; margin:auto;">
<tbody>
<tr>
<td>Positive Exponent (n&gt;0)</td>
<td style="width:20px;">&nbsp;</td>
<td>0<sup>n</sup> = 0</td>
</tr>
<tr>
<td>Negative Exponent (n&lt;0)</td>
<td>&nbsp;</td>
<td>0<sup>-n</sup> is <b>undefined</b> (because <a href="../numbers/dividing-by-zero.html">dividing by 0</a> is undefined)</td>
</tr>
<tr>
<td>Exponent = 0</td>
<td>&nbsp;</td>
<td>0<sup>0</sup> ... <i>ummm</i> ... see below!</td>
</tr>
</tbody></table>
<p>&nbsp;</p>
<div class="fun">
<h3>The Strange Case of 0<sup>0</sup></h3>
<p>There are different arguments for the correct value of 0<sup>0</sup></p>
<p>0<sup>0</sup> could be 1, or possibly 0, so some people say it is really "indeterminate":</p>
<table align="center" width="80%" border="0">
<tbody>
<tr>
<td rowspan="3" width="10%"><img src="../images/style/question.gif" alt="question mark" height="47" width="26"></td>
<td width="28%">x<sup>0</sup> = 1, so ...</td>
<td width="62%"> 0<sup>0</sup> = 1</td>
</tr>
<tr>
<td width="28%">0<sup>n</sup> = 0, so ...</td>
<td width="62%"> 0<sup>0</sup> = 0</td>
</tr>
<tr>
<td width="28%">When in doubt ...</td>
<td width="62%">0<sup>0</sup> = <i>"indeterminate"</i></td>
</tr>
</tbody></table>
</div>
<p>&nbsp;</p>
<div class="questions">323, 2215, 2306, 324, 2216, 2307, 371, 2217, 2308, 2309</div>
<div class="related">
<a href="../exponent.html">Exponent</a>
<a href="exponent-fractional.html">Fractional Exponents</a>
<a href="../index-notation-powers.html">Powers of 10</a>
<a href="index.html">Algebra Menu</a>
</div>
<!-- #EndEditable -->
</article>
<div id="adend" class="centerfull noprint"></div>
<footer id="footer" class="centerfull noprint"></footer>
<div id="copyrt">Copyright © 2021 MathsIsFun.com</div>
</div>
</body><!-- #EndTemplate -->
<!-- Mirrored from www.mathsisfun.com/algebra/exponent-laws.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:48:19 GMT -->
</html>