Lucas Kent e39465ad2f Changes to be committed:
new file:   Files/flashplayer_32_sa.exe
	new file:   favicon.ico
	new file:   globe.gif
	new file:   imgs/download.png
	new file:   imgs/zuck.jpg
	new file:   index.html
	new file:   other.ico
	new file:   script.js
	new file:   site.webmanifest
	new file:   sitemap.html
	new file:   styles/backround.css
	new file:   styles/border.css
	new file:   styles/fonts/Titillium_Web/OFL.txt
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf
	new file:   styles/fonts/webfontkit-20221027-163353/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2
	new file:   styles/fonts/webfontkit-20221027-165950/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2
	new file:   styles/style.css
	new file:   tools/2048/.gitignore
	new file:   tools/2048/.jshintrc
	new file:   tools/2048/CONTRIBUTING.md
	new file:   tools/2048/LICENSE.txt
	new file:   tools/2048/README.md
	new file:   tools/2048/Rakefile
	new file:   tools/2048/favicon.ico
	new file:   tools/2048/index.html
	new file:   tools/2048/js/animframe_polyfill.js
	new file:   tools/2048/js/application.js
	new file:   tools/2048/js/bind_polyfill.js
	new file:   tools/2048/js/classlist_polyfill.js
	new file:   tools/2048/js/game_manager.js
	new file:   tools/2048/js/grid.js
	new file:   tools/2048/js/html_actuator.js
	new file:   tools/2048/js/keyboard_input_manager.js
	new file:   tools/2048/js/local_storage_manager.js
	new file:   tools/2048/js/tile.js
    new file:   tools/2048/meta/apple-touch-icon.png
	new file:   tools/webretro/cores/neocd_libretro.js
	new file:   tools/webretro/cores/neocd_libretro.wasm
	new file:   tools/webretro/cores/nestopia_libretro.js
	new file:   tools/webretro/cores/nestopia_libretro.wasm
	new file:   tools/webretro/cores/o2em_libretro.js
	new file:   tools/webretro/cores/o2em_libretro.wasm
	new file:   tools/webretro/cores/opera_libretro.js
	new file:   tools/webretro/cores/opera_libretro.wasm
2022-11-02 08:40:01 -04:00

908 lines
29 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html lang="en"><!-- #BeginTemplate "/Templates/Advanced.dwt" --><!-- DW6 -->
<!-- Mirrored from www.mathsisfun.com/algebra/eigenvalue.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 01:08:38 GMT -->
<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
<!-- #BeginEditable "doctitle" -->
<title>Eigenvector and Eigenvalue</title>
<meta name="description" content="Math explained in easy language, plus puzzles, games, quizzes, videos and worksheets. For K-12 kids, teachers and parents.">
<style>
.mat, .det {
font: 20px Verdana, Arial, Trebuchet MS, Tahoma, Geneva, Verdana, sans-serif;
color: #f30;
background-image: linear-gradient(#07c, #07c), linear-gradient(#07c, #07c), linear-gradient(#07c, #07c), linear-gradient(#07c, #07c);
background-repeat: no-repeat;
background-size: 7px 2px;
background-position: top left, top right, bottom left, bottom right;
border: solid #07c;
border-width: 0 2px;
display: inline-block;
vertical-align: middle;
padding: 2px 9px 3px 9px;
border-radius: 3px;
}
.det {
background-image: none;
border: none;
border-left: 2px solid;
border-right: 2px solid;
border-radius: 0;
}
.cols1, .cols2, .cols3, .cols4 {
display: inline-grid;
grid-template-columns: max-content;
align-content: space-evenly;
grid-gap: 4px 14px;
text-align: center;
vertical-align: middle;
}
.cols1 {
grid-template-columns: max-content;
}
.cols2 {
grid-template-columns: repeat(2, max-content);
}
.cols3 {
grid-template-columns: repeat(3, max-content);
}
.cols4 {
grid-template-columns: repeat(4, max-content);
}
.txt {
display: inline-block;
vertical-align: middle;
padding: 3px 3px;
font: 21px Verdana, Geneva, sans-serif;
color: goldenrod;
text-align: center;
min-width: 25px;
}
</style>
<!-- #EndEditable -->
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
<meta name="HandheldFriendly" content="true">
<meta name="referrer" content="always">
<link rel="preload" href="../images/style/font-champ-bold.ttf" as="font" type="font/ttf" crossorigin="">
<link rel="preload" href="../style4.css" as="style">
<link rel="preload" href="../main4.js" as="script">
<link rel="stylesheet" href="../style4.css">
<script src="../main4.js" defer="defer"></script>
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async="" src="https://www.googletagmanager.com/gtag/js?id=UA-29771508-1"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'UA-29771508-1');
</script>
</head>
<body id="bodybg" class="adv">
<div id="stt"></div>
<div id="adTop"></div>
<header>
<div id="hdr"></div>
<div id="tran"></div>
<div id="adHide"></div>
<div id="cookOK"></div>
</header>
<div class="mid">
<nav>
<div id="menuWide" class="menu"></div>
<div id="logo"><a href="../index.html"><img src="../images/style/logo-adv.svg" alt="Math is Fun Advanced"></a></div>
<div id="search" role="search"></div>
<div id="linkto"></div>
<div id="menuSlim" class="menu"></div>
<div id="menuTiny" class="menu"></div>
</nav>
<div id="extra"></div>
<article id="content" role="main">
<!-- #BeginEditable "Body" -->
<h1 class="center">Eigenvector and Eigenvalue</h1>
<p>They have many uses!</p>
<p>A simple example is that an eigenvector <b>does not change direction</b> in a transformation:</p>
<p class="center"><img src="images/eigen-transform.svg" alt="Eigenvector in transformation" height="244" width="548"></p>
<p>How do we find that vector?</p>
<h2>The Mathematics Of It</h2>
<p>For a square matrix <b>A</b>, an Eigenvector and Eigenvalue make this equation true:</p>
<p class="center"><img src="images/eigenvalue.svg" alt="A times x = lambda times x" height="109" width="275"></p>
<p>Let us see it in action:</p>
<div class="example">
<h3>Example: For this matrix<br>
<div style="text-align: center;">
<div class="mat">
<div class="cols2">
<div>6</div>
<div>3</div>
<div>4</div>
<div>5</div>
</div>
</div>
</div>
<!-- [-6,3~4,5] --><br>
an eigenvector is<br>
<div style="text-align: center;">
<div class="mat">
<div class="cols1">
<div>1</div>
<div>4</div>
</div>
</div>
</div>
<!-- [1~4] --><br>
with a matching eigenvalue of <span class="larger">6</span></h3>
<p>Let's do some <a href="matrix-multiplying.html">matrix multiplies</a> to see if that is true.</p>
<p><span class="center large">Av</span> gives us:</p>
<div style="text-align: center;">
<div class="mat">
<div class="cols2" style="color:#850;">
<div>6</div>
<div>3</div>
<div>4</div>
<div>5</div>
</div>
</div>
<div class="mat">
<div class="cols1" style="color:#f80;">
<div>1</div>
<div>4</div>
</div>
</div>
<div class="txt">=</div>
<div class="mat">
<div class="cols1">
<div>6×1+3×4</div>
<div>4×1+5×4</div>
</div>
</div>
<div class="txt">=</div>
<div class="mat">
<div class="cols1">
<div>6</div>
<div>24</div>
</div>
</div>
</div>
<!-- [-6,3~4,5][1~4] = [-6*1+3*4~4*1+5*4] = [6~24] -->
<p><span class="center large">λv</span> gives us :</p>
<div style="text-align: center;">
<div class="txt" style="width:35px">&nbsp;</div>
<div class="txt" style="color:#05c;">6</div>
<div class="mat">
<div class="cols1" style="color:#f80;">
<div>1</div>
<div>4</div>
</div>
</div>
<div class="txt" style="width:205px">=</div>
<div class="mat">
<div class="cols1">
<div>6</div>
<div>24</div>
</div>
</div>
</div>
<!-- 6[1~4] = [6~24] -->
<p>Yes they are equal! </p>
<p>So we get <span class="large">Av = λv</span> as promised.</p>
</div>
<p>Notice how we multiply a <b>matrix</b> by a <b>vector</b> and get the same result as when we multiply a <b>scalar</b> (just a number) by that <b>vector</b>.</p>
<h2>How do we find these <span class="center">eigen things?</span></h2>
<p>We start by finding the <b>eigenvalue</b>. We know this equation must be true:</p>
<p class="center large">Av = λv</p>
<p>Next we put in an <a href="matrix-types.html">identity matrix</a> so we are dealing with matrix-vs-matrix:</p>
<p class="center large">Av = λIv</p>
<p>Bring all to left hand side:</p>
<p class="center large">Av λIv = 0</p>
<p>If <b>v</b> is non-zero then we can (hopefully) solve for <span class="center large">λ</span> using just the <a href="matrix-determinant.html">determinant</a>:</p>
<p class="center large">| A λI | = 0</p>
<p>Let's try that equation on our previous example:</p>
<div class="example">
<h3>Example: Solve for <span class="center large">λ</span></h3>
<p>Start with <span class="larger">| A λI | = 0</span></p>
<table style="border: 0; margin:auto;">
<tbody>
<tr>
<td style="width:10px;">
<div class="larger" style="transform: scaleY(3) translateY(-1px); vertical-align:top;"><b>|</b></div></td>
<td>
<div style="text-align: center;">
<div class="mat">
<div class="cols2">
<div>6</div>
<div>3</div>
<div>4</div>
<div>5</div>
</div>
</div>
<div class="txt"> λ</div>
<div class="mat">
<div class="cols2">
<div>1</div>
<div>0</div>
<div>0</div>
<div>1</div>
</div>
</div>
</div>
<!-- [-6,3~4,5] - &lambda;[1,0~0,1] --></td>
<td style="width:10px;">
<div class="larger" style="transform: scaleY(3) translateY(-1px); vertical-align:top;"><b>|</b></div></td>
<td><span class="larger"> = 0</span></td>
</tr>
</tbody></table>
<p>Which is:</p>
<div style="text-align: center;">
<div class="det">
<div class="cols2">
<div>6λ</div>
<div>3</div>
<div>4</div>
<div>5λ</div>
</div>
</div>
<span class="larger">= 0</span>
</div>
<p><!-- [-6-&lambda;,3~4,5-&lambda;] = 0 -->
Calculating that determinant gets:</p>
<p class="center larger">(6λ)(5λ) 3×4 = 0</p>
<p>Which simplifies to this <a href="quadratic-equation.html">Quadratic Equation</a>:</p>
<p class="center larger">λ<sup>2</sup> + λ 42 = 0</p>
<p>And <a href="../quadratic-equation-solver.html">solving it</a> gets:</p>
<p class="center larger">λ = 7 or 6</p>
<p>And yes, there are <b>two</b> possible eigenvalues.</p>
</div>
<p>Now we know <b>eigenvalues</b>, let us find their matching <b>eigenvectors</b>.</p>
<div class="example">
<h3>Example (continued): Find the Eigenvector for the Eigenvalue <b>λ = 6</b>:</h3>
<p>Start with:</p>
<p class="center large">Av = λv</p>
Put in the values we know:<br>
<div style="text-align: center;">
<div class="mat">
<div class="cols2">
<div>6</div>
<div>3</div>
<div>4</div>
<div>5</div>
</div>
</div>
<div class="mat">
<div class="cols1">
<div>x</div>
<div>y</div>
</div>
</div>
<div class="txt">= 6</div>
<div class="mat">
<div class="cols1">
<div>x</div>
<div>y</div>
</div>
</div>
</div>
<!-- [-6,3~4,5][x~y] = 6[x~y] -->
<p>After multiplying we get these two equations:</p>
<table style="border: 0; margin:auto;">
<tbody>
<tr>
<td style="text-align:right;">6x + 3y </td>
<td style="text-align:center; width:25px;">=</td>
<td>6x</td>
</tr>
<tr>
<td style="text-align:right;">4x + 5y </td>
<td style="text-align:center; width:25px;">=</td>
<td>6y</td>
</tr>
</tbody></table>
<p>Bringing all to left hand side:</p>
<table style="border: 0; margin:auto;">
<tbody>
<tr>
<td style="text-align:right;">12x + 3y </td>
<td style="text-align:center; width:25px;">=</td>
<td>0</td>
</tr>
<tr>
<td style="text-align:right;">4x 1y </td>
<td style="text-align:center; width:25px;">=</td>
<td>0</td>
</tr>
</tbody></table>
<p><i>Either</i> equation reveals that <b>y = 4x</b>, so the <b>eigenvector</b> is any non-zero multiple of this:</p>
<div style="text-align: center;">
<div class="mat">
<div class="cols1">
<div>1</div>
<div>4</div>
</div>
</div>
</div>
<!-- [1~4] -->
<p>And we get the solution shown at the top of the page:</p>
<div style="text-align: center;">
<div class="mat">
<div class="cols2" style="color:#850;">
<div>6</div>
<div>3</div>
<div>4</div>
<div>5</div>
</div>
</div>
<div class="mat">
<div class="cols1" style="color:#f80;">
<div>1</div>
<div>4</div>
</div>
</div>
<div class="txt">=</div>
<div class="mat">
<div class="cols1">
<div>6×1+3×4</div>
<div>4×1+5×4</div>
</div>
</div>
<div class="txt">=</div>
<div class="mat">
<div class="cols1">
<div>6</div>
<div>24</div>
</div>
</div>
</div>
<!-- [-6,3~4,5][1~4] = [-6*1+3*4~4*1+5*4] = [6~24] -->
<p class="center">... and also ...</p>
<div style="text-align: center;">
<div class="txt" style="width:35px">&nbsp;</div>
<div class="txt" style="color:#05c;">6</div>
<div class="mat">
<div class="cols1" style="color:#f80;">
<div>1</div>
<div>4</div>
</div>
</div>
<div class="txt" style="width:205px">=</div>
<div class="mat">
<div class="cols1">
<div>6</div>
<div>24</div>
</div>
</div>
</div>
<!-- 6[1~4] = [6~24] -->
<p>So <span class="large">Av = λv</span>, and we have success!<span class="large"> <br></span></p>
</div>
<p>Now it is <b>your turn</b> to find the eigenvector for the other eigenvalue of <span class="larger">7</span></p>
<h2>Why?</h2>
<p>What is the purpose of these?</p>
<p>One of the cool things is we can use <a href="matrix-introduction.html">matrices</a> to do <a href="matrix-transform.html">transformations</a> in space, which is used a lot in computer graphics.</p>
<p>In that case the eigenvector is "the direction that doesn't change direction" !</p>
<p>And the eigenvalue is the scale of the stretch:</p>
<ul>
<li><b>1</b> means no change,</li>
<li><b>2</b> means doubling in length,</li>
<li><b>1</b> means pointing backwards along the eigenvalue's direction</li>
<li>etc</li>
</ul>
<p>There are also many applications in physics, etc.</p>
<h2>Why "Eigen"</h2>
<div class="words">
<p>Eigen is a German word meaning "own" or "typical"</p>
<p class="center"><i>"das ist ihnen <b>eigen</b>"</i> is German for <i>"that is <b>typical</b> of them"</i></p>
</div>
<p>Sometimes in English we use the word "characteristic", so an eigenvector can be called a "characteristic vector".</p>
<h2>Not Just Two Dimensions</h2>
<p>Eigenvectors work perfectly well in 3 and higher dimensions.</p>
<div class="example">
<h3>Example: find the eigenvalues for this 3x3 matrix:
<div style="text-align: center;">
<div class="mat">
<div class="cols3">
<div>2</div>
<div>0</div>
<div>0</div>
<div>0</div>
<div>4</div>
<div>5</div>
<div>0</div>
<div>4</div>
<div>3</div>
</div>
</div>
</div>
<!-- [2,0,0~0,4,5~0,4,3] --></h3>
<p>First calculate <span class="center large">A λI</span>:</p>
<div style="text-align: center;">
<div class="mat">
<div class="cols3">
<div>2</div>
<div>0</div>
<div>0</div>
<div>0</div>
<div>4</div>
<div>5</div>
<div>0</div>
<div>4</div>
<div>3</div>
</div>
</div>
<div class="txt"> λ</div>
<div class="mat">
<div class="cols3">
<div>1</div>
<div>0</div>
<div>0</div>
<div>0</div>
<div>1</div>
<div>0</div>
<div>0</div>
<div>0</div>
<div>1</div>
</div>
</div>
<div class="txt">=</div>
<div class="mat">
<div class="cols3">
<div>2λ</div>
<div>0</div>
<div>0</div>
<div>0</div>
<div>4λ</div>
<div>5</div>
<div>0</div>
<div>4</div>
<div>3λ</div>
</div>
</div>
</div>
<!-- [2,0,0~0,4,5~0,4,3] - &lambda;[1,0,0~0,1,0~0,0,1] = [2-&lambda;,0,0~0,4-&lambda;,5~0,4,3-&lambda;] -->
<p>Now the determinant should equal zero:</p>
<div style="text-align: center;">
<div class="det">
<div class="cols3">
<div>2λ</div>
<div>0</div>
<div>0</div>
<div>0</div>
<div>4λ</div>
<div>5</div>
<div>0</div>
<div>4</div>
<div>3λ</div>
</div>
</div>
<div class="txt">= 0</div>
</div>
<!-- [2-&lambda;,0,0~0,4-&lambda;,5~0,4,3-&lambda;] = 0 -->
<p>Which is:</p>
<p class="center large">(2λ) [ (4λ)(3λ) 5×4 ] = 0</p>
<p>This ends up being a cubic equation, but just looking at it here we see one of the roots is <b>2</b> (because of 2λ), and the part inside the square brackets is Quadratic, with <a href="../quadratic-equation-solver.html">roots</a> of <b>1</b> and <b>8</b>.</p>
<p>So the Eigenvalues are <b>1</b>, <b>2</b> and <b>8</b></p>
</div>
<div class="example">
<h3>Example (continued): find the Eigenvector that matches the Eigenvalue <b>1</b></h3>
<p>Put in the values we know:</p>
<div style="text-align: center;">
<div class="mat">
<div class="cols3">
<div>2</div>
<div>0</div>
<div>0</div>
<div>0</div>
<div>4</div>
<div>5</div>
<div>0</div>
<div>4</div>
<div>3</div>
</div>
</div>
<div class="mat">
<div class="cols1">
<div>x</div>
<div>y</div>
<div>z</div>
</div>
</div>
<div class="txt">= 1</div>
<div class="mat">
<div class="cols1">
<div>x</div>
<div>y</div>
<div>z</div>
</div>
</div>
</div>
<!-- [2,0,0~0,4,5~0,4,3][x~y~z] = 8[x~y~z] -->
<p>After multiplying we get these equations:</p>
<table style="border: 0; margin:auto;">
<tbody>
<tr>
<td style="text-align:right;">2x </td>
<td style="text-align:center; width:25px;">=</td>
<td>x</td>
</tr>
<tr>
<td style="text-align:right;">4y + 5z </td>
<td style="text-align:center; width:25px;">=</td>
<td>y</td>
</tr>
<tr>
<td style="text-align:right;">4y + 3z </td>
<td style="text-align:center;">=</td>
<td>z</td>
</tr>
</tbody></table>
<p>Bringing all to left hand side:</p>
<table style="border: 0; margin:auto;">
<tbody>
<tr>
<td style="text-align:right;">3x</td>
<td style="text-align:center; width:25px;">=</td>
<td>0</td>
</tr>
<tr>
<td style="text-align:right;">5y + 5z </td>
<td style="text-align:center; width:25px;">=</td>
<td>0</td>
</tr>
<tr>
<td style="text-align:right;">4y + 4z </td>
<td style="text-align:center;">=</td>
<td>0</td>
</tr>
</tbody></table>
<p>So <b>x = 0</b>, and <b>y = z</b> and so the <b>eigenvector</b> is any non-zero multiple of this:</p>
<div style="text-align: center;">
<div class="mat">
<div class="cols1">
<div>0</div>
<div>1</div>
<div>1</div>
</div>
</div>
</div>
<!-- [0~1~-1] -->
<p>TEST <span class="large">Av</span>:</p>
<div style="text-align: center;">
<div class="mat">
<div class="cols3">
<div>2</div>
<div>0</div>
<div>0</div>
<div>0</div>
<div>4</div>
<div>5</div>
<div>0</div>
<div>4</div>
<div>3</div>
</div>
</div>
<div class="mat">
<div class="cols1">
<div>0</div>
<div>1</div>
<div>1</div>
</div>
</div>
<div class="txt">=</div>
<div class="mat">
<div class="cols1">
<div>0</div>
<div>45</div>
<div>43</div>
</div>
</div>
<div class="txt">=</div>
<div class="mat">
<div class="cols1">
<div>0</div>
<div>1</div>
<div>1</div>
</div>
</div>
</div>
<!-- [2,0,0~0,4,5~0,4,3][0~1~-1] = [0~4-5~4-3] = [0~-1~1] -->
<p>And <span class="large">λv</span>:</p>
<div style="text-align: center;">
<div class="txt">1</div>
<div class="mat">
<div class="cols1">
<div>0</div>
<div>1</div>
<div>1</div>
</div>
</div>
<div class="txt">=</div>
<div class="mat">
<div class="cols1">
<div>0</div>
<div>1</div>
<div>1</div>
</div>
</div>
</div>
<!-- -1[0~1~-1] = [0~-1~1] -->
<p>So <span class="large">Av = λv</span>, yay!</p>
<p>(You can try your hand at the eigenvalues of <b>2</b> and <b>8</b>)</p>
</div>
<p>&nbsp;</p>
<h2>Rotation</h2>
<p>Back in the 2D world again, this matrix will do a rotation by θ:</p>
<div style="text-align: center;">
<div class="mat">
<div class="cols2">
<div>cos(θ)</div>
<div>sin(θ)</div>
<div>sin(θ)</div>
<div>cos(θ)</div>
</div>
</div>
</div>
<!-- [cos(&theta;),-sin(&theta;)~sin(&theta;),cos(&theta;)] = 0 -->
<div class="example">
<h3>Example: Rotate by 30°</h3>
<p>cos(30°) = <span class="intbl"><em>√3</em><strong>2</strong></span> and sin(30°) = <span class="intbl"><em>1</em><strong>2</strong></span>, so:</p>
<div style="text-align: center;">
<div class="mat">
<div class="cols2">
<div>cos(30°)</div>
<div>sin(30°)</div>
<div>sin(30°)</div>
<div>cos(30°)</div>
</div>
</div>
<div class="txt">=</div>
<div class="mat">
<div class="cols2">
<div><span class="intbl"><em>√3</em><strong>2</strong></span></div>
<div><span class="intbl"><em>1</em><strong>2</strong></span></div>
<div><span class="intbl"><em>1</em><strong>2</strong></span></div>
<div><span class="intbl"><em>√3</em><strong>2</strong></span></div>
</div>
</div>
</div>
<!-- [cos(30&deg;),-sin(30&deg;)~sin(30&deg;),cos(30&deg;)] = [sqr3/2,-1/2~1/2,sqr3/2] -->
<p>But if we <b>rotate all points</b>, what is the "direction that doesn't change direction"?</p>
<p class="center"><img src="images/transform-rotate.svg" alt="A Rotation Transformation" height="241" width="212"></p>
<p>&nbsp;</p>
<p>Let us work through the mathematics to find out:</p>
<p>First calculate <span class="center large">A λI</span>:</p>
<p><br></p>
<div style="text-align: center;">
<div class="mat">
<div class="cols2">
<div><span class="intbl"><em>√3</em><strong>2</strong></span></div>
<div><span class="intbl"><em>1</em><strong>2</strong></span></div>
<div><span class="intbl"><em>1</em><strong>2</strong></span></div>
<div><span class="intbl"><em>√3</em><strong>2</strong></span></div>
</div>
</div>
<div class="txt"> λ</div>
<div class="mat">
<div class="cols2">
<div>1</div>
<div>0</div>
<div>0</div>
<div>1</div>
</div>
</div>
<div class="txt">=</div>
<div class="mat">
<div class="cols2">
<div><span class="intbl"><em>√3</em><strong>2</strong></span>−λ</div>
<div><span class="intbl"><em>1</em><strong>2</strong></span></div>
<div><span class="intbl"><em>1</em><strong>2</strong></span></div>
<div><span class="intbl"><em>√3</em><strong>2</strong></span>−λ</div>
</div>
</div>
<div class="txt"></div>
</div>
<!-- [sqr3/2,-1/2~1/2,sqr3/2] - &lambda;[1,0~0,1] = [sqr3/2 - &lambda;,-1/2~1/2,sqr3/2 - &lambda;] -->
<p>Now the determinant should equal zero:</p>
<div style="text-align: center;">
<div class="det">
<div class="cols2">
<div><span class="intbl"><em>√3</em><strong>2</strong></span>−λ</div>
<div><span class="intbl"><em>1</em><strong>2</strong></span></div>
<div><span class="intbl"><em>1</em><strong>2</strong></span></div>
<div><span class="intbl"><em>√3</em><strong>2</strong></span>−λ</div>
</div>
</div>
<div class="txt">= 0</div>
</div>
<!-- [sqr3/2 - &lambda;,-1/2~1/2,sqr3/2 - &lambda;] = 0 -->
<p>Which is:</p>
<p class="center large">(<span class="intbl"><em>√3</em><strong>2</strong></span>−λ)(<span class="intbl"><em>√3</em><strong>2</strong></span>−λ) (<span class="intbl"><em>1</em><strong>2</strong></span>)(<span class="intbl"><em>1</em><strong>2</strong></span>) = 0</p>
<!-- ( sqr3/2 - &lambda; )( sqr3/2 - &lambda; ) - ( -1/2 )( 1/2 ) = 0 -->
<p>Which becomes this Quadratic Equation:</p>
<p class="center large">λ<sup>2</sup> (√3)λ + 1 = 0</p>
<!-- &lambda;^2 - (sqr3)&lambda; + 1 = 0 -->
<p>Whose roots are:</p>
<p class="center large">λ = <span class="intbl"><em>√3</em><strong>2</strong></span> ± <span class="intbl"><em><i><b>i</b></i></em><strong>2</strong></span></p>
<!-- &lambda; = sqr3/2 +- i/2 -->
<p>The eigenvalues are complex!</p>
<p>I don't know how to show you that on a graph, but we still get a solution.</p>
<h3>Eigenvector</h3>
<p>So, what is an eigenvector that matches, say, the <span class="intbl"><em>√3</em><strong>2</strong></span> + <span class="intbl"><em><i><b>i</b></i></em><strong>2</strong></span> root?</p>
<p>Start with:</p>
<p class="center large">Av = λv</p>
Put in the values we know:<br>
<div style="text-align: center;">
<div class="mat">
<div class="cols2">
<div><span class="intbl"><em>√3</em><strong>2</strong></span></div>
<div><span class="intbl"><em>1</em><strong>2</strong></span></div>
<div><span class="intbl"><em>1</em><strong>2</strong></span></div>
<div><span class="intbl"><em>√3</em><strong>2</strong></span></div>
</div>
</div>
<div class="mat">
<div class="cols1">
<div>x</div>
<div>y</div>
</div>
</div>
<div class="txt">= (<span class="intbl"><em>√3</em><strong>2</strong></span> + <span class="intbl"><em><i><b>i</b></i></em><strong>2</strong></span>)</div>
<div class="mat">
<div class="cols1">
<div>x</div>
<div>y</div>
</div>
</div>
</div>
<!-- [sqr3/2,-1/2~1/2,sqr3/2][x~y] = ( sqr3/2 + i/2 ) [x~y] -->
<p>After multiplying we get these two equations:</p>
<p class="center large"><span class="intbl"><em>√3</em><strong>2</strong></span>x <span class="intbl"><em>1</em><strong>2</strong></span>y = <span class="intbl"><em>√3</em><strong>2</strong></span>x + <span class="intbl"><em><b><i>i</i></b></em><strong>2</strong></span>x</p>
<!-- sqr3/2 x - 1/2 y = sqr3/2 x + i/2 x -->
<p class="center large"><span class="intbl"><em>1</em><strong>2</strong></span>x + <span class="intbl"><em>√3</em><strong>2</strong></span>y = <span class="intbl"><em>√3</em><strong>2</strong></span>y + <span class="intbl"><em><b><i>i</i></b></em><strong>2</strong></span>y</p>
<!-- 1/2 x + sqr3/2 y = sqr3/2 y + i/2 y -->
<p>Which simplify to:</p>
<p class="center large">y = <b><i>i</i></b>x</p>
<p class="center large">x = <b><i>i</i></b>y</p>
<p>And the solution is any non-zero multiple of:</p>
<div style="text-align: center;">
<div class="mat">
<div class="cols1">
<div><b><i>i</i></b></div>
<div>1</div>
</div>
</div>
</div>
<!-- [i~1] -->
<p>or</p>
<div style="text-align: center;">
<div class="mat">
<div class="cols1">
<div><b><i>i</i></b></div>
<div>1</div>
</div>
</div>
</div>
<!-- [-i~1] -->
<p><b>Wow, such a simple answer!</b></p>
<p><i>Is this just because we chose 30°? Or does it work for any rotation matrix? I will let you work that out! Try another angle, or better still use "cos(θ)" and "sin(θ)".</i></p>
<p>&nbsp;</p>
<p>Oh, and let us <b>check</b> at least one of those solutions:</p>
<div style="text-align: center;">
<div class="txt"></div>
<div class="mat">
<div class="cols2">
<div><span class="intbl"><em>√3</em><strong>2</strong></span></div>
<div><span class="intbl"><em>1</em><strong>2</strong></span></div>
<div><span class="intbl"><em>1</em><strong>2</strong></span></div>
<div><span class="intbl"><em>√3</em><strong>2</strong></span></div>
</div>
</div>
<div class="mat">
<div class="cols1">
<div><b><i>i</i></b></div>
<div>1</div>
</div>
</div>
<div class="txt">=</div>
<div class="mat">
<div class="cols1">
<div><b><i>i</i></b><span class="intbl"><em>√3</em><strong>2</strong></span> <span class="intbl"><em>1</em><strong>2</strong></span></div>
<div><span class="intbl"><em><b><i>i</i></b></em><strong>2</strong></span> + <span class="intbl"><em>√3</em><strong>2</strong></span></div>
</div>
</div>
</div>
<!-- [sqr3/2,-1/2~1/2,sqr3/2][i~1] = [i sqr3/2 - 1/2~i/2 + sqr3/2] -->
<p>Does it match this?</p>
<div style="text-align: center;">
<div class="txt">(<span class="intbl"><em>√3</em><strong>2</strong></span> + <span class="intbl"><em><b><i>i</i></b></em><strong>2</strong></span>)</div>
<div class="mat">
<div class="cols1">
<div><b><i>i</i></b></div>
<div>1</div>
</div>
</div>
<div class="txt">=</div>
<div class="mat">
<div class="cols1">
<div><b><i>i</i></b><span class="intbl"><em>√3</em><strong>2</strong></span> <span class="intbl"><em>1</em><strong>2</strong></span></div>
<div><span class="intbl"><em>√3</em><strong>2</strong></span> + <span class="intbl"><em><b><i>i</i></b></em><strong>2</strong></span></div>
</div>
</div>
</div>
<!-- ( sqr3/2 + i/2 ) [i~1] = [i sqr3/2 - 1/2~sqr3/2 + i/2] -->
<p>Oh yes it does!</p>
</div>
<p>&nbsp;</p>
<div class="questions">17820, 17821, 17804, 17805, 17806, 17807, 17814, 17818, 17819, 17808, 17809, 17810, 17811, 17812, 17813, 17815, 17816, 17817, 17822, 17823</div>
<div class="related">
<a href="matrix-introduction.html">Introduction to Matrices</a>
<a href="matrix-multiplying.html">Matrix Multiplication</a>
<a href="matrix-index.html">Matrix Index</a>
<a href="matrix-calculator.html">Matrix Calculator</a>
<a href="index-2.html">Algebra 2 Index</a>
</div>
<!-- #EndEditable -->
</article>
<div id="adend" class="centerfull noprint"></div>
<footer id="footer" class="centerfull noprint"></footer>
<div id="copyrt">Copyright © 2022 Rod Pierce</div>
</div>
</body><!-- #EndTemplate -->
<!-- Mirrored from www.mathsisfun.com/algebra/eigenvalue.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 01:08:38 GMT -->
</html>