lkarch.org/tools/mathisfun/www.mathsisfun.com/polar-cartesian-coordinates.html
Lucas Kent e39465ad2f Changes to be committed:
new file:   Files/flashplayer_32_sa.exe
	new file:   favicon.ico
	new file:   globe.gif
	new file:   imgs/download.png
	new file:   imgs/zuck.jpg
	new file:   index.html
	new file:   other.ico
	new file:   script.js
	new file:   site.webmanifest
	new file:   sitemap.html
	new file:   styles/backround.css
	new file:   styles/border.css
	new file:   styles/fonts/Titillium_Web/OFL.txt
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf
	new file:   styles/fonts/webfontkit-20221027-163353/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2
	new file:   styles/fonts/webfontkit-20221027-165950/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2
	new file:   styles/style.css
	new file:   tools/2048/.gitignore
	new file:   tools/2048/.jshintrc
	new file:   tools/2048/CONTRIBUTING.md
	new file:   tools/2048/LICENSE.txt
	new file:   tools/2048/README.md
	new file:   tools/2048/Rakefile
	new file:   tools/2048/favicon.ico
	new file:   tools/2048/index.html
	new file:   tools/2048/js/animframe_polyfill.js
	new file:   tools/2048/js/application.js
	new file:   tools/2048/js/bind_polyfill.js
	new file:   tools/2048/js/classlist_polyfill.js
	new file:   tools/2048/js/game_manager.js
	new file:   tools/2048/js/grid.js
	new file:   tools/2048/js/html_actuator.js
	new file:   tools/2048/js/keyboard_input_manager.js
	new file:   tools/2048/js/local_storage_manager.js
	new file:   tools/2048/js/tile.js
    new file:   tools/2048/meta/apple-touch-icon.png
	new file:   tools/webretro/cores/neocd_libretro.js
	new file:   tools/webretro/cores/neocd_libretro.wasm
	new file:   tools/webretro/cores/nestopia_libretro.js
	new file:   tools/webretro/cores/nestopia_libretro.wasm
	new file:   tools/webretro/cores/o2em_libretro.js
	new file:   tools/webretro/cores/o2em_libretro.wasm
	new file:   tools/webretro/cores/opera_libretro.js
	new file:   tools/webretro/cores/opera_libretro.wasm
2022-11-02 08:40:01 -04:00

356 lines
14 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html lang="en"><!-- #BeginTemplate "/Templates/Main.dwt" --><!-- DW6 -->
<!-- Mirrored from www.mathsisfun.com/polar-cartesian-coordinates.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:59:59 GMT -->
<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
<!-- #BeginEditable "doctitle" -->
<title>Polar and Cartesian Coordinates</title>
<!-- #EndEditable -->
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
<meta name="HandheldFriendly" content="true">
<meta name="referrer" content="always">
<link rel="preload" href="images/style/font-champ-bold.ttf" as="font" type="font/ttf" crossorigin="">
<link rel="preload" href="style4.css" as="style">
<link rel="preload" href="main4.js" as="script">
<link rel="stylesheet" href="style4.css">
<script src="main4.js" defer="defer"></script>
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async="" src="https://www.googletagmanager.com/gtag/js?id=UA-29771508-1"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'UA-29771508-1');
</script>
</head>
<body id="bodybg">
<div id="stt"></div>
<div id="adTop"></div>
<header>
<div id="hdr"></div>
<div id="tran"></div>
<div id="adHide"></div>
<div id="cookOK"></div>
</header>
<div class="mid">
<nav>
<div id="menuWide" class="menu"></div>
<div id="logo"><a href="index.html"><img src="images/style/logo.svg" alt="Math is Fun"></a></div>
<div id="search" role="search"></div>
<div id="linkto"></div>
<div id="menuSlim" class="menu"></div>
<div id="menuTiny" class="menu"></div>
</nav>
<div id="extra"></div>
<article id="content" role="main">
<!-- #BeginEditable "Body" -->
<h1 class="center">Polar and Cartesian Coordinates</h1>
<p class="center"><b>... and how to convert between them.</b></p>
<p><i>In a hurry? Read the <a href="#summary">Summary</a>. But please read why first:</i></p>
<p>To pinpoint where we are on a map or graph there are two main systems:</p>
<h2>Cartesian Coordinates</h2>
<p>Using <a href="data/cartesian-coordinates.html">Cartesian Coordinates</a> we mark a point by <b>how far along</b> and <b>how far up</b> it is:</p>
<p class="center"><img src="geometry/images/coordinates-cartesian.svg" alt="coordinates cartesian (12,5)" height="232" width="348"></p>
<h2>Polar Coordinates</h2>
<p>Using Polar Coordinates we mark a point by <b>how far away</b>, and <b>what angle</b> it is:</p>
<p class="center"><img src="geometry/images/coordinates-polar.svg" alt="coordinates polar 13 at 22.6 degrees" height="232" width="348"></p>
<h2>Converting</h2>
<p>To convert from one to the other we will use this triangle:</p>
<div class="center"><img src="images/coordinates-triangle.gif" alt="coordinates triangle" height="180" width="310"> </div><br>
<h2>To Convert from Cartesian to Polar</h2>
<p>When we know a point in Cartesian Coordinates (x,y) and we want it in Polar Coordinates (r,<i>θ</i>) we <b>solve a right triangle with two known sides</b>.</p>
<h3 class="larger">Example: What is (12,5) in Polar Coordinates?</h3>
<p class="center"><img src="images/coordinates-to-polar.gif" alt="coordinates to polar" height="180" width="310"></p>
<p>Use <a href="pythagoras.html">Pythagoras Theorem</a> to find the long side (the hypotenuse):</p>
<div class="so">r<sup>2</sup> = 12<sup>2</sup> + 5<sup>2</sup></div>
<div class="so">r = √ (12<sup>2</sup> + 5<sup>2</sup>)</div>
<div class="so">r = √ (144 + 25)
</div>
<div class="so">r = √ (169)
= <b>13</b></div>
<p>Use the <a href="sine-cosine-tangent.html">Tangent Function</a> to find the angle:</p>
<div class="so">tan( <i>θ</i> ) = 5 / 12</div>
<div class="so"><i>θ</i> = tan<sup>-1 </sup>( 5 / 12 ) = <b>22.6°</b> (to one decimal)</div>
<p class="larger"><b>Answer</b>: the point (12,5) is <b>(13, 22.6°)</b> in Polar Coordinates.</p>
<div class="def">
<img src="algebra/images/calculator-sin-cos-tan.jpg" alt="calculator-sin-cos-tan" style="float:right; margin: 10px;" height="75" width="118">
<h3>What is <b>tan<sup>-1</sup></b> ?</h3>
<p class="larger">It is the <a href="algebra/trig-inverse-sin-cos-tan.html">Inverse Tangent Function</a>:</p>
<ul>
<li><b class="larger">Tangent</b> takes an angle and gives us a ratio,</li>
<li><b class="larger">Inverse Tangent</b> takes a ratio (like "5/12") and gives us an angle.</li>
</ul>
</div> <p>&nbsp;</p>
<h3><b>Summary</b>: to convert from Cartesian Coordinates (x,y) to Polar Coordinates (r,θ):</h3>
<ul>
<div class="bigul">
<li><b align="center">r = √ ( x<sup>2</sup> + y<sup>2 </sup>)</b></li>
<li><b align="center"><i>θ</i> = tan<sup>-1 </sup>( y / x )</b></li>
</div>
</ul>
<p>Note: Calculators may give the wrong value of <b>tan<sup>-1 </sup>()</b> when x or y are negative ... see below for more.</p>
<h2>To Convert from Polar to Cartesian</h2>
<p>When we know a point in Polar Coordinates (r, <i>θ</i>), and we want it in Cartesian Coordinates (x,y) we <b>solve a right triangle with a known long side and angle</b>:</p>
<div class="example">
<h3>Example: What is (13, 22.6°) in Cartesian Coordinates?</h3>
<div class="center"><img src="images/coordinates-to-cartesian.gif" alt="to cartesian coordinates" height="180" width="310"><br>
<br>
<table cellspacing="0" cellpadding="5" border="0">
<tbody>
<tr>
<td style="text-align:right;">Use the <a href="sine-cosine-tangent.html">Cosine Function</a> for x:</td>
<td>&nbsp;</td>
<td><span class="larger">cos( 22.6° ) = x / 13</span></td>
</tr>
<tr>
<td style="text-align:right;">Rearranging and solving:</td>
<td>&nbsp;</td>
<td><span class="larger">x = 13 × cos( 22.6° ) </span></td>
</tr>
<tr>
<td style="text-align:right;">&nbsp;</td>
<td>&nbsp;</td>
<td><span class="larger">x = 13 × 0.923 </span></td>
</tr>
<tr>
<td style="text-align:right;">&nbsp;</td>
<td>&nbsp;</td>
<td><span class="larger">x = <b>12.002...</b></span></td>
</tr>
<tr>
<td style="text-align:right;">&nbsp;</td>
<td>&nbsp;</td>
<td>&nbsp;</td>
</tr>
<tr>
<td style="text-align:right;">Use the <a href="sine-cosine-tangent.html">Sine Function</a> for y:</td>
<td>&nbsp;</td>
<td><span class="larger">sin( 22.6° ) = y / 13</span></td>
</tr>
<tr>
<td style="text-align:right;">Rearranging and solving:</td>
<td>&nbsp;</td>
<td><span class="larger">y = 13 × sin( 22.6° ) </span></td>
</tr>
<tr>
<td style="text-align:right;">&nbsp;</td>
<td>&nbsp;</td>
<td><span class="larger">y = 13 × 0.391 </span></td>
</tr>
<tr>
<td style="text-align:right;">&nbsp;</td>
<td>&nbsp;</td>
<td><span class="larger">y = <b>4.996...</b></span></td>
</tr>
</tbody></table>
</div>
<p class="larger">Answer: the point (13, 22.6°) is <i>almost exactly</i> <b>(12, 5)</b> in Cartesian Coordinates.</p>
</div>
<h3><b>Summary</b>: to convert from Polar Coordinates (r,<i>θ</i>) to Cartesian Coordinates (x,y) :</h3>
<ul>
<div class="bigul">
<li><b align="center">x = r</b> × <b>cos( <i>θ</i> )</b></li>
<li><b align="center">y = r</b> × <b>sin(<i> θ</i> )</b></li>
</div>
</ul>
<h3>How to Remember?</h3>
<div class="center80">
<p class="center"><b>(x,y) is alphabetical,<br>
<b>(cos,sin)</b> is also alphabetical</b></p>
</div>
<p>Also <i><b>"y and sine rhyme"</b></i> (try saying it!)</p>
<h2>But What About Negative Values of X and Y?</h2>
<p style="float:right; margin: 0 0 5px 10px;"><img src="data/images/cartesian-quadrants.gif" alt="Quadrants" height="191" width="250"></p>
<h3>Four Quadrants</h3>
<p>When we include negative values, the x and y axes divide the<br>
space up into 4 pieces:</p>
<p class="center"><b>Quadrants I, II, III</b> and<b> IV</b></p>
<p><i>(They are numbered in a counter-clockwise direction)</i></p>
<p>When converting from <span class="larger">Polar to Cartesian</span> coordinates it all works out nicely:</p>
<div class="example">
<h3>Example: What is (12, 195°) in Cartesian coordinates?</h3>
<p>r = 12 and θ = 195°</p>
<ul>
<li>x = 12 × cos(195°)<br>
x = 12 × 0.9659...<br>
x = <b>11.59</b> to 2
decimal places</li>
<li>y&nbsp;= 12 × sin(195°)<br>
y = 12 × 0.2588...<br>
y = <b>3.11</b> to 2
decimal places</li>
</ul>
<p>So the point is at<b> (11.59, 3.11)</b>, which is in Quadrant III</p>
</div>
<p>But when converting from <span class="larger">Cartesian to Polar</span> coordinates ...</p>
<p class="center larger">... the calculator can give the <b>wrong value of tan<sup>-1</sup></b></p>
<p>It all depends what Quadrant the point is in! Use this to fix things:</p>
<table align="center" cellspacing="2" cellpadding="2" border="1">
<tbody>
<tr>
<td style="text-align: center;">Quadrant</td>
<td style="text-align: center;"><b>Value of tan<sup>-1</sup></b></td>
</tr>
<tr>
<td style="text-align: center;">I</td>
<td style="text-align: center;">Use
the calculator value</td>
</tr>
<tr>
<td style="text-align: center;">II</td>
<td style="text-align: center;">Add
180° to the calculator value</td>
</tr>
<tr>
<td style="text-align: center;">III</td>
<td style="text-align: center;">Add
180° to the calculator value</td>
</tr>
<tr>
<td style="text-align: center;">IV</td>
<td style="text-align: center;">Add
360° to the calculator value</td>
</tr>
</tbody>
</table><br>
<div class="example"> <img src="geometry/images/polar-example-1.gif" alt="polar example 1" style="float:right; margin: 10px;" height="168" width="178">
<h3>Example: P = (3, 10)</h3>
<p>P is in <b>Quadrant II</b></p>
<ul>
<li>r = √((3)<sup>2</sup> + 10<sup>2</sup>)<br>
r = √109 = <b>10.4</b> to 1 decimal place</li>
<li>θ = tan<sup>-1</sup>(10/3)<br>
θ = tan<sup>-1</sup>(3.33...)</li>
</ul>
<p>The calculator value for tan<sup>-1</sup>(3.33...) is 73.3°</p>
<div class="so"> The rule for Quadrant II is: <span style="font-weight: bold;">Add
180° to the calculator value</span></div>
<div class="so">θ = 73.3° + 180<span style="font-weight: bold;">° =</span> 106.7°</div>
<p>So the Polar Coordinates for the point (3, 10) are <b>(10.4, 106.7°)</b></p>
</div>
<div class="example"> <img src="geometry/images/polar-example-2.gif" alt="polar example 2" style="float:right; margin: 10px;" height="163" width="181">
<h3>Example: Q = (5, 8)</h3>
<p>Q is in <b>Quadrant IV</b></p>
<ul>
<li>r = √(5<sup>2</sup> + (8)<sup>2</sup>)<br>
r
= √89
= <b>9.4</b> to 1 decimal place</li>
<li>θ = tan<sup>-1</sup>(8/5)<br>
θ = tan<sup>-1</sup>(1.6)</li>
</ul>
<p>The calculator value for tan<sup>-1</sup>(1.6) is 58.0°</p>
<div class="so">The rule for Quadrant IV is: <span style="font-weight: bold;">Add
360° to the calculator value</span></div>
<div class="so">θ = 58.0° + 360<span style="font-weight: bold;">° =</span> 302.0°</div>
<p>So the Polar Coordinates for the point (5, 8) are <b>(9.4,&nbsp;302.0°)</b></p>
</div>
<p>&nbsp;</p>
<h2><a id="summary"></a>Summary</h2>
<div class="dotpoint">
<p>To convert from Polar Coordinates (r,<i>θ</i>) to Cartesian Coordinates (x,y) :</p>
<ul>
<li><b>x = r</b> × <b>cos( <i>θ</i> )</b></li>
<li><b>y = r</b> × <b>sin(<i> θ</i> )</b></li>
</ul>
</div>
<div class="dotpoint">
<p class="larger">To convert from Cartesian Coordinates (x,y) to Polar Coordinates (r,θ):</p>
<ul>
<li><b>r = √ ( x<sup>2</sup> + y<sup>2 </sup>)</b></li>
<li><b><i>θ</i> = tan<sup>-1 </sup>( y / x )</b></li>
</ul>
</div>
<div class="dotpoint">
<p>The value of <b>tan<sup>-1</sup>( y/x )</b> may need to be adjusted:</p>
<ul>
<li>Quadrant
I:<span style="text-align: center;"> Use
the calculator value</span></li>
<li>Quadrant
II:<span style="text-align: center;"> Add
180°</span></li>
<li>Quadrant
III: <span style="text-align: center;">Add
180°</span></li>
<li>Quadrant
IV: <span style="text-align: center;">Add
360°</span></li>
</ul>
</div><p>&nbsp;</p>
<div class="activity"> <a href="activity/walk-in-desert-2.html">Activity: A Walk in the Desert 2</a> </div>
<div class="questions">2167, 2168, 2169, 2170, 2171, 2172, 2173, 2174, 5159, 5160</div>
<div class="related">
<a href="data/cartesian-coordinates-interactive.html">Interactive Cartesian Coordinates</a>
<a href="data/cartesian-coordinates.html">Cartesian Coordinates</a>
<a href="data/graphs-index.html">Graphs Index</a>
<a href="geometry/index.html">Geometry Index</a>
</div>
<!-- #EndEditable -->
</article>
<div id="adend" class="centerfull noprint"></div>
<footer id="footer" class="centerfull noprint"></footer>
<div id="copyrt">Copyright © 2022 Rod Pierce</div>
</div>
</body><!-- #EndTemplate -->
<!-- Mirrored from www.mathsisfun.com/polar-cartesian-coordinates.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 01:00:00 GMT -->
</html>