new file: Files/flashplayer_32_sa.exe new file: favicon.ico new file: globe.gif new file: imgs/download.png new file: imgs/zuck.jpg new file: index.html new file: other.ico new file: script.js new file: site.webmanifest new file: sitemap.html new file: styles/backround.css new file: styles/border.css new file: styles/fonts/Titillium_Web/OFL.txt new file: styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf new file: styles/fonts/webfontkit-20221027-163353/generator_config.txt new file: styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css new file: styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css new file: styles/fonts/webfontkit-20221027-163353/stylesheet.css new file: styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html new file: styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff new file: styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2 new file: styles/fonts/webfontkit-20221027-165950/generator_config.txt new file: styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css new file: styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css new file: styles/fonts/webfontkit-20221027-165950/stylesheet.css new file: styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html new file: styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff new file: styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2 new file: styles/style.css new file: tools/2048/.gitignore new file: tools/2048/.jshintrc new file: tools/2048/CONTRIBUTING.md new file: tools/2048/LICENSE.txt new file: tools/2048/README.md new file: tools/2048/Rakefile new file: tools/2048/favicon.ico new file: tools/2048/index.html new file: tools/2048/js/animframe_polyfill.js new file: tools/2048/js/application.js new file: tools/2048/js/bind_polyfill.js new file: tools/2048/js/classlist_polyfill.js new file: tools/2048/js/game_manager.js new file: tools/2048/js/grid.js new file: tools/2048/js/html_actuator.js new file: tools/2048/js/keyboard_input_manager.js new file: tools/2048/js/local_storage_manager.js new file: tools/2048/js/tile.js new file: tools/2048/meta/apple-touch-icon.png new file: tools/webretro/cores/neocd_libretro.js new file: tools/webretro/cores/neocd_libretro.wasm new file: tools/webretro/cores/nestopia_libretro.js new file: tools/webretro/cores/nestopia_libretro.wasm new file: tools/webretro/cores/o2em_libretro.js new file: tools/webretro/cores/o2em_libretro.wasm new file: tools/webretro/cores/opera_libretro.js new file: tools/webretro/cores/opera_libretro.wasm
435 lines
20 KiB
HTML
435 lines
20 KiB
HTML
<!DOCTYPE html>
|
||
<html lang="en"><!-- #BeginTemplate "/Templates/Advanced.dwt" --><!-- DW6 -->
|
||
|
||
<!-- Mirrored from www.mathsisfun.com/numbers/nth-root.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:48:16 GMT -->
|
||
<head>
|
||
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
|
||
|
||
<!-- #BeginEditable "doctitle" -->
|
||
<title>nth Roots</title>
|
||
|
||
|
||
<style>
|
||
|
||
.nthroot {font-size:75%;display:inline-block; margin-left: -0.5em; transform: translateX(0.8em) translateY(-1em);}
|
||
|
||
|
||
.vertellip { position: relative; margin: 0.1rem; }
|
||
.vertellip:after {
|
||
content: '';
|
||
position: absolute;
|
||
left: 50%;
|
||
top: 50%;
|
||
width: 0.1rem;
|
||
height: 0.1rem;
|
||
background: currentcolor;
|
||
border-radius: 50%;
|
||
box-shadow: 0 0 0 0.1rem, 0 0.6rem 0 0.1rem, 0 -0.6rem 0 0.1rem;
|
||
}
|
||
|
||
|
||
</style>
|
||
|
||
|
||
<!-- #EndEditable -->
|
||
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
|
||
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
|
||
<meta name="HandheldFriendly" content="true">
|
||
<meta name="referrer" content="always">
|
||
<link rel="preload" href="../images/style/font-champ-bold.ttf" as="font" type="font/ttf" crossorigin="">
|
||
<link rel="preload" href="../style4.css" as="style">
|
||
<link rel="preload" href="../main4.js" as="script">
|
||
<link rel="stylesheet" href="../style4.css">
|
||
<script src="../main4.js" defer="defer"></script>
|
||
<!-- Global site tag (gtag.js) - Google Analytics -->
|
||
<script async="" src="https://www.googletagmanager.com/gtag/js?id=UA-29771508-1"></script>
|
||
<script>
|
||
window.dataLayer = window.dataLayer || [];
|
||
function gtag(){dataLayer.push(arguments);}
|
||
gtag('js', new Date());
|
||
gtag('config', 'UA-29771508-1');
|
||
</script>
|
||
</head>
|
||
|
||
<body id="bodybg" class="adv">
|
||
|
||
<div id="stt"></div>
|
||
<div id="adTop"></div>
|
||
<header>
|
||
<div id="hdr"></div>
|
||
<div id="tran"></div>
|
||
<div id="adHide"></div>
|
||
<div id="cookOK"></div>
|
||
</header>
|
||
|
||
<div class="mid">
|
||
|
||
<nav>
|
||
<div id="menuWide" class="menu"></div>
|
||
<div id="logo"><a href="../index.html"><img src="../images/style/logo-adv.svg" alt="Math is Fun Advanced"></a></div>
|
||
|
||
<div id="search" role="search"></div>
|
||
<div id="linkto"></div>
|
||
|
||
<div id="menuSlim" class="menu"></div>
|
||
<div id="menuTiny" class="menu"></div>
|
||
</nav>
|
||
|
||
<div id="extra"></div>
|
||
|
||
<article id="content" role="main">
|
||
|
||
<!-- #BeginEditable "Body" -->
|
||
|
||
|
||
<h1 class="center">nth Root</h1>
|
||
|
||
<p class="center"><i>The "nth Root" used <b>n times</b> in a <b>multiplication</b> gives the original value</i></p>
|
||
|
||
|
||
<h2>" nth ? "</h2>
|
||
|
||
<p class="center larger"><b>1</b>st, <b>2</b>nd, <b>3</b>rd, <b>4</b>th, <b>5</b>th, ... <b>n</b>th ...</p>
|
||
<p>Instead of talking about the "4th", "16th", etc, we can just say the "<span class="large"><i><b>n</b>th</i> </span>".</p>
|
||
|
||
|
||
<h2>The nth Root</h2>
|
||
|
||
<ul>
|
||
<li>The "2nd" root is the <a href="../square-root.html">square root</a></li>
|
||
<li>The "3rd" root is the <a href="cube-root.html">cube root</a></li>
|
||
<li>etc!</li>
|
||
</ul><br>
|
||
<div class="simple">
|
||
<table style="border: 0;">
|
||
<tbody>
|
||
<tr>
|
||
<td class="largest" align="center">2</td>
|
||
<td style="text-align:center;"> </td>
|
||
<td style="text-align:center; width:260px;">
|
||
<span class="nthroot"> </span><span style="font-size:120%;">√</span><span class="overline">a</span>
|
||
<span style="font-size:170%;">×</span>
|
||
<span class="nthroot"> </span><span style="font-size:120%;">√</span><span class="overline">a</span>
|
||
<span style="font-size:140%;"> = a</span>
|
||
</td>
|
||
<td> </td>
|
||
<td>The <b>square root</b> used <b>two</b> times in a multiplication gives the original value.</td>
|
||
</tr>
|
||
<tr>
|
||
<td class="largest" align="center">3</td>
|
||
<td style="text-align:center;"> </td>
|
||
<td style="text-align:center;">
|
||
<span class="nthroot">3</span><span style="font-size:120%;">√</span><span class="overline">a</span>
|
||
<span style="font-size:170%;">×</span>
|
||
<span class="nthroot">3</span><span style="font-size:120%;">√</span><span class="overline">a</span>
|
||
<span style="font-size:170%;">×</span>
|
||
<span class="nthroot">3</span><span style="font-size:120%;">√</span><span class="overline">a</span>
|
||
<span style="font-size:140%;"> = a</span>
|
||
</td>
|
||
<td> </td>
|
||
<td> The <b>cube root</b> used <b>three</b> times in a multiplication gives the original value.</td>
|
||
</tr>
|
||
<tr>
|
||
<td style="text-align:center;"><span class="vertellip"></span><br>
|
||
</td>
|
||
<td> </td>
|
||
<td style="text-align:center;"><span class="vertellip"></span><br>
|
||
</td>
|
||
<td> </td>
|
||
<td style="text-align:center;"><span class="vertellip"></span><br>
|
||
</td>
|
||
</tr>
|
||
<tr>
|
||
<td class="largest" align="center">n</td>
|
||
<td style="text-align:center;"> </td>
|
||
<td style="text-align:center;">
|
||
<span class="nthroot">n</span><span style="font-size:120%;">√</span><span class="overline">a</span>
|
||
<span style="font-size:170%;">×</span>
|
||
<span class="nthroot">n</span><span style="font-size:120%;">√</span><span class="overline">a</span>
|
||
<span style="font-size:170%;">×</span>
|
||
<span style="font-size:130%;">...</span>
|
||
<span style="font-size:170%;">×</span>
|
||
<span class="nthroot">n</span><span style="font-size:120%;">√</span><span class="overline">a</span>
|
||
<span style="font-size:130%;"> = a</span><br>
|
||
<i>(n of them)</i>
|
||
</td>
|
||
<td> </td>
|
||
<td>The <b>nth root</b> used <b>n</b> times in a multiplication gives the original value.</td>
|
||
</tr>
|
||
</tbody></table>
|
||
</div><br>
|
||
<div class="def">
|
||
<p class="center larger">So it is the <b>general</b> way of talking about roots<br>
|
||
(so it could be 2nd, or 9th, or 324th, or whatever)</p>
|
||
</div>
|
||
|
||
|
||
<h2>The nth Root Symbol</h2>
|
||
|
||
<p style="float:left; margin: 0 30px 5px 0;"> <img src="images/nth-root-symbol.gif" alt="nth root symbol" height="54" width="30"></p>
|
||
<p>This is the special symbol that means "nth root",
|
||
it is the <i><b>"radical"</b></i> symbol (used for square roots) with a little <b>n</b> to mean <b>nth</b> root.</p>
|
||
|
||
|
||
<h2>Using it</h2>
|
||
|
||
<p>We could use the nth root in a question like this:</p>
|
||
<div class="example">
|
||
<p>Question: What is "n" in this equation?</p>
|
||
<p class="center larger"><span class="nthroot">n</span><span style="font-size:120%;">√</span><span class="overline">625</span> = 5</p>
|
||
<p>Answer: I just happen to know that <b>625 = 5<sup>4</sup></b> , so the <b>4</b>th root of 625 must be 5:</p>
|
||
<p class="center larger"><span class="nthroot">4</span><span style="font-size:120%;">√</span><span class="overline">625</span> = 5</p>
|
||
</div>
|
||
<p>Or we could use "n" because we want to say general things:</p>
|
||
<div class="example">
|
||
<p>Example: When <b>n</b> is odd then
|
||
<span class="larger">
|
||
<span class="nthroot">n</span><span style="font-size:120%;">√</span><span class="overline">a<sup>n</sup></span> = a
|
||
</span>
|
||
(we talk about this later).</p>
|
||
</div>
|
||
|
||
|
||
<h2>Why "Root" ... ?</h2>
|
||
|
||
<table align="center" width="80%" border="0">
|
||
<tbody>
|
||
<tr>
|
||
<td><img src="../algebra/images/tree-root.jpg" alt="tree root" height="118" width="67"></td>
|
||
<td>
|
||
<p>When you see "root" think</p>
|
||
<p><i>"I know the tree</i><i>, but what is the root that produced it?</i> "</p>
|
||
<p>Example: in <b>√9 = 3</b> the "tree" is <b>9</b> , and the root is <b>3</b> .</p></td>
|
||
</tr>
|
||
</tbody></table>
|
||
|
||
|
||
<h2>Properties</h2>
|
||
|
||
<p>Now we know what an nth root is, let us look at some properties:</p>
|
||
|
||
<h3>Multiplication and Division</h3>
|
||
<p>We can "pull apart" multiplications under the root sign like this:</p>
|
||
<p class="center"><span class=" larger">
|
||
<span class="nthroot">n</span><span style="font-size:120%;">√</span><span class="overline">ab</span> =
|
||
<span class="nthroot">n</span><span style="font-size:120%;">√</span><span class="overline">a</span>
|
||
×
|
||
<span class="nthroot">n</span><span style="font-size:120%;">√</span><span class="overline">b</span>
|
||
</span><br>
|
||
(<i>Note: if n is even then a and b must both be ≥ 0)</i></p>
|
||
<p>This can help us simplify equations in algebra, and also make some calculations easier:</p>
|
||
<div class="example">
|
||
<h3>Example:</h3>
|
||
<p class="center"><span class=" larger">
|
||
<span class="nthroot">3</span><span style="font-size:120%;">√</span><span class="overline">128</span> =
|
||
<span class="nthroot">3</span><span style="font-size:120%;">√</span><span class="overline">64×2</span> =
|
||
<span class="nthroot">3</span><span style="font-size:120%;">√</span><span class="overline">64</span>
|
||
×
|
||
<span class="nthroot">3</span><span style="font-size:120%;">√</span><span class="overline">2</span> =
|
||
4<span class="nthroot">3</span><span style="font-size:120%;">√</span><span class="overline">2</span>
|
||
</span></p>
|
||
<p>
|
||
So the cube root of 128 simplifies to 4 times the cube root of 2.
|
||
</p>
|
||
</div>
|
||
<p>It also works for division:</p>
|
||
<p class="center"><span class=" larger">
|
||
<span class="nthroot">n</span><span style="font-size:120%;">√</span><span class="overline">a/b</span> =
|
||
<span class="nthroot">n</span><span style="font-size:120%;">√</span><span class="overline">a</span>
|
||
<span style="font-size:140%;">/</span>
|
||
<span class="nthroot">n</span><span style="font-size:120%;">√</span><span class="overline">b</span>
|
||
</span><br>
|
||
(<i>a≥0 and b>0)<br>
|
||
Note that b cannot be zero, as we can't divide by zero</i></p>
|
||
<div class="example">
|
||
<p>Example:</p>
|
||
<p class="center"><span class=" larger">
|
||
<span class="nthroot">3</span><span style="font-size:120%;">√</span><span class="overline">1/64</span> =
|
||
<span class="nthroot">3</span><span style="font-size:120%;">√</span><span class="overline">1</span>
|
||
<span style="font-size:140%;">/</span>
|
||
<span class="nthroot">3</span><span style="font-size:120%;">√</span><span class="overline">64</span> =
|
||
1/4
|
||
</span></p>
|
||
<p>
|
||
So the cube root of 1/64 simplifies to just one quarter.
|
||
</p>
|
||
</div>
|
||
|
||
<h3>Addition and Subtraction</h3>
|
||
<p>But we <b>cannot</b> do that kind of thing for additions or subtractions!</p>
|
||
<p class="center larger"><img src="../images/style/no.svg" alt="no!" style="vertical-align:middle;" height="30" width="30">
|
||
<span class="nthroot">n</span><span style="font-size:120%;">√</span><span class="overline">a + b</span>
|
||
<span style="font-size:140%;">≠</span>
|
||
<span class="nthroot">n</span><span style="font-size:120%;">√</span><span class="overline">a</span> +
|
||
<span class="nthroot">n</span><span style="font-size:120%;">√</span><span class="overline">b</span></p>
|
||
<p class="center larger"><img src="../images/style/no.svg" alt="no!" style="vertical-align:middle;" height="30" width="30">
|
||
<span class="nthroot">n</span><span style="font-size:120%;">√</span><span class="overline">a − b</span>
|
||
<span style="font-size:140%;">≠</span>
|
||
<span class="nthroot">n</span><span style="font-size:120%;">√</span><span class="overline">a</span> −
|
||
<span class="nthroot">n</span><span style="font-size:120%;">√</span><span class="overline">b</span></p>
|
||
<p class="center larger"><img src="../images/style/no.svg" alt="no!" style="vertical-align:middle;" height="30" width="30">
|
||
<span class="nthroot">n</span><span style="font-size:120%;">√</span><span class="overline">a<sup>n</sup> + b<sup>n</sup></span>
|
||
<span style="font-size:140%;">≠</span> a + b</p>
|
||
<div class="example">
|
||
<p>Example: <a href="../pythagoras.html">Pythagoras' Theorem</a> says</p>
|
||
<table style="border: 0;">
|
||
<tbody>
|
||
<tr>
|
||
<td><img src="../geometry/images/triangle-abc.svg" alt="Right angled triangle" height="109" width="189"></td>
|
||
<td> </td>
|
||
<td><span class="large">a<sup>2</sup> + b<sup>2</sup> = c<sup>2</sup></span></td>
|
||
</tr>
|
||
</tbody></table>
|
||
<p>So we calculate c like this:</p>
|
||
<p class="center larger">c = <span style="font-size:120%;">√</span><span class="overline">a<sup>2</sup> + b<sup>2</sup></span></p>
|
||
<p>Which is <b>not</b> the same as <b>c = a + b</b> , right?</p>
|
||
</div>
|
||
<p>It is an easy trap to fall into, so beware.</p>
|
||
<p>It also means that, unfortunately, additions and subtractions can be hard to deal with when under a root sign.</p>
|
||
<p> </p>
|
||
|
||
<h3>Exponents vs Roots</h3>
|
||
<p>An exponent on one side of "=" can be turned into a root on the other side of "=":</p>
|
||
<p class="center larger">If <b>a<sup>n</sup> = b</b> then <b>a =
|
||
<span class="nthroot">n</span><span style="font-size:120%;">√</span><span class="overline">b</span></b></p>
|
||
<p>Note: when n is even then b must be ≥ 0</p>
|
||
<div class="example">
|
||
<h3>Example:</h3>
|
||
<p class="center larger"><b>5<sup>4</sup> = 625</b> so <b>5 = <span class="nthroot">4</span><span style="font-size:120%;">√</span><span class="overline">625</span></b></p>
|
||
</div>
|
||
<p> </p>
|
||
|
||
<h3>nth Root of a-to-the-nth-Power</h3>
|
||
<p>When a value has an <b><a href="../exponent.html">exponent</a> of n</b> and we take the <b>nth root</b> we <b>get the value back again</b> ...</p>
|
||
<table style="border: 0;">
|
||
<tbody>
|
||
<tr>
|
||
<td>
|
||
<p class="large">... when a is <b>positive</b> (or zero):</p></td>
|
||
<td><br></td>
|
||
<td style="width:10px;"> </td>
|
||
<td><img src="images/nth-root-n-a-n.svg" alt="nth root a^n" height="34" width="90"></td>
|
||
<td style="width:30px;"> </td>
|
||
<td><i>(when <b>a ≥ 0</b> )</i> </td>
|
||
</tr>
|
||
</tbody></table>
|
||
<div class="example">
|
||
<p>Example: <img src="images/nth-root-3-2-3.svg" alt="root examples" style="vertical-align:middle; margin-left:20px;" height="34" width="91"></p>
|
||
</div>
|
||
<table style="border: 0;">
|
||
<tbody>
|
||
<tr>
|
||
<td>
|
||
<p class="large">... or when the <b>exponent is odd</b> :</p></td>
|
||
<td><br></td>
|
||
<td style="width:10px;"> </td>
|
||
<td><img src="images/nth-root-n-a-n.svg" alt="nth root a^n" height="34" width="90"></td>
|
||
<td style="width:30px;"> </td>
|
||
<td><i> (when <b>n is odd</b> )</i> </td>
|
||
</tr>
|
||
</tbody></table>
|
||
<div class="example">
|
||
<p>Example:<img src="images/nth-root-3-m2-3.svg" alt="root examples" style="vertical-align:middle; margin-left:20px;" height="34" width="114"></p>
|
||
</div>
|
||
<p class="larger">... but when <b>a is negative</b> and the <b>exponent is even</b> we get this:</p>
|
||
<p class="center"><img src="images/nth-root-2-m3-2.svg" alt="Square root of square" height="34" width="117"></p>
|
||
<p class="center">Did you see that −3 became +3 ?</p>
|
||
<table style="border: 0;">
|
||
<tbody>
|
||
<tr>
|
||
<td class="large">... so we must do this:</td>
|
||
<td><br></td>
|
||
<td style="width:10px;"> </td>
|
||
<td><img src="images/nth-root-n-a-n-abs.svg" alt="nth root a^n = abs(a)" height="34" width="110"></td>
|
||
<td style="width:30px;"> </td>
|
||
<td><i>(when <b>a < 0</b> and <b>n is even</b> )</i><br>
|
||
</td>
|
||
</tr>
|
||
</tbody></table>
|
||
<p>The <b class="large">|a|</b> means the <a href="absolute-value.html">absolute value</a> of <b>a</b>, in other words any negative becomes a positive.</p>
|
||
<div class="example">
|
||
<p>Example:<img src="images/nth-root-4-m2-4.svg" alt="4th root example" style="vertical-align:middle; margin-left:20px;" height="34" width="184"></p>
|
||
</div>
|
||
<p>So that is something to be careful of! Read more at <a href="../algebra/exponents-squaring-negative.html">Exponents of Negative Numbers</a></p>
|
||
<p>Here it is in a little table:</p>
|
||
<div class="simple">
|
||
<table style="border: 0; margin:auto;">
|
||
<tbody>
|
||
<tr style="text-align:center;">
|
||
<th> </th>
|
||
<th width="150">n is odd</th>
|
||
<th width="150">n is even</th>
|
||
</tr>
|
||
<tr style="text-align:center;">
|
||
<th>a ≥ 0</th>
|
||
<td style="width:150px;"><img src="images/nth-root-n-a-n.svg" alt="nth root a^n" height="34" width="90"></td>
|
||
<td style="width:150px;"><img src="images/nth-root-n-a-n.svg" alt="nth root a^n" height="34" width="90"></td>
|
||
</tr>
|
||
<tr style="text-align:center;">
|
||
<th>a < 0</th>
|
||
<td style="width:150px;"><img src="images/nth-root-n-a-n.svg" alt="nth root a^n" height="34" width="90"></td>
|
||
<td width="150" bgcolor="#FFFFCC"><img src="images/nth-root-n-a-n-abs.svg" alt="nth root a^n = abs(a)" height="34" width="110"></td>
|
||
</tr>
|
||
</tbody></table>
|
||
</div>
|
||
<p> </p>
|
||
|
||
<h3>nth Root of a-to-the-mth-Power</h3>
|
||
<p>What happens when the exponent and root are different values (<b>m</b> and <b>n</b>)?</p>
|
||
<p>Well, we are allowed to change the order like this:</p>
|
||
<p class="center larger"><span class="nthroot">n</span><span style="font-size:120%;">√</span><span class="overline">a<sup>m</sup></span> =
|
||
<span style="font-size:130%;">(</span><span class="nthroot">n</span><span style="font-size:120%;">√</span><span class="overline">a</span> <span style="font-size:130%;">)<sup>m</sup></span></p>
|
||
<p>So this: nth root of (a to the power m)<br>
|
||
becomes (nth root of a) to the power m</p>
|
||
<div class="example">
|
||
|
||
<h3>Example:</h3>
|
||
<p class="center larger"><span class="nthroot">3</span><span style="font-size:120%;">√</span><span class="overline">27<sup>2</sup></span> =
|
||
<span style="font-size:130%;">(</span><span class="nthroot">3</span><span style="font-size:120%;">√</span><span class="overline">27</span> <span style="font-size:130%;">)<sup>2</sup></span><br>
|
||
= 3<sup>2</sup><br>
|
||
= 9</p>
|
||
<p>Easier than squaring 27 then taking a cube root, right?</p>
|
||
</div>
|
||
<p><br></p>
|
||
<p>But there is an even <b>more powerful method</b> ... we can combine the exponent and root to make a new exponent, like this:</p>
|
||
<p class="center larger"><span class="nthroot">n</span><span style="font-size:120%;">√</span><span class="overline">a<sup>m</sup></span> =
|
||
<span style=" transform: scale(1.3); display:inline-block;">a</span><sup><span class="intbl"><em>m</em><strong>n</strong></span></sup></p>
|
||
<p>The new exponent is the fraction <span class="intbl"><em>m</em><strong>n</strong></span> which may be easier to solve.</p>
|
||
<div class="example">
|
||
|
||
<h3>Example:</h3>
|
||
<p class="center larger"><span class="nthroot">3</span><span style="font-size:120%;">√</span><span class="overline">4<sup>6</sup></span>
|
||
= <span style=" transform: scale(1.4); display:inline-block;">4</span><sup><span class="intbl"><em>6</em><strong>3</strong></span></sup><br>
|
||
= 4<sup>2</sup><br>
|
||
= 16</p>
|
||
</div>This works because the <b>nth root</b> is the same as an <b>exponent of (1/n)</b>
|
||
<p class="center larger"><span class="nthroot">n</span><span style="font-size:120%;">√</span><span class="overline">a</span> =
|
||
<span style=" transform: scale(1.3); display:inline-block;">a</span><sup><span class="intbl"><em>1</em><strong>n</strong></span></sup></p>
|
||
<div class="example">
|
||
<h3>Example:</h3>
|
||
<p class="center larger"><span class="nthroot">2</span><span style="font-size:120%;">√</span><span class="overline">9</span>
|
||
= <span style=" transform: scale(1.4); display:inline-block;">9</span><sup><span class="intbl"><em>1</em><strong>2</strong></span></sup>
|
||
= 3</p>
|
||
</div>
|
||
<p>You might like to read about <a href="../algebra/exponent-fractional.html">Fractional Exponents</a> to find out why!</p>
|
||
<p> </p>
|
||
<div class="questions">318, 2055, 319, 317, 1087, 2056, 1088, 2057, 3159, 3160</div>
|
||
|
||
<div class="related">
|
||
<a href="../square-root.html">Squares and Square Roots</a>
|
||
<a href="../surds.html">Surds</a>
|
||
<a href="../scientific-calculator.html">Scientific Calculator</a>
|
||
<a href="../algebra/index.html">Algebra Index</a>
|
||
</div>
|
||
<!-- #EndEditable -->
|
||
|
||
</article>
|
||
|
||
<div id="adend" class="centerfull noprint"></div>
|
||
<footer id="footer" class="centerfull noprint"></footer>
|
||
<div id="copyrt">Copyright © 2021 MathsIsFun.com</div>
|
||
|
||
</div>
|
||
</body><!-- #EndTemplate -->
|
||
<!-- Mirrored from www.mathsisfun.com/numbers/nth-root.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:48:18 GMT -->
|
||
</html> |