new file: Files/flashplayer_32_sa.exe new file: favicon.ico new file: globe.gif new file: imgs/download.png new file: imgs/zuck.jpg new file: index.html new file: other.ico new file: script.js new file: site.webmanifest new file: sitemap.html new file: styles/backround.css new file: styles/border.css new file: styles/fonts/Titillium_Web/OFL.txt new file: styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf new file: styles/fonts/webfontkit-20221027-163353/generator_config.txt new file: styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css new file: styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css new file: styles/fonts/webfontkit-20221027-163353/stylesheet.css new file: styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html new file: styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff new file: styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2 new file: styles/fonts/webfontkit-20221027-165950/generator_config.txt new file: styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css new file: styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css new file: styles/fonts/webfontkit-20221027-165950/stylesheet.css new file: styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html new file: styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff new file: styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2 new file: styles/style.css new file: tools/2048/.gitignore new file: tools/2048/.jshintrc new file: tools/2048/CONTRIBUTING.md new file: tools/2048/LICENSE.txt new file: tools/2048/README.md new file: tools/2048/Rakefile new file: tools/2048/favicon.ico new file: tools/2048/index.html new file: tools/2048/js/animframe_polyfill.js new file: tools/2048/js/application.js new file: tools/2048/js/bind_polyfill.js new file: tools/2048/js/classlist_polyfill.js new file: tools/2048/js/game_manager.js new file: tools/2048/js/grid.js new file: tools/2048/js/html_actuator.js new file: tools/2048/js/keyboard_input_manager.js new file: tools/2048/js/local_storage_manager.js new file: tools/2048/js/tile.js new file: tools/2048/meta/apple-touch-icon.png new file: tools/webretro/cores/neocd_libretro.js new file: tools/webretro/cores/neocd_libretro.wasm new file: tools/webretro/cores/nestopia_libretro.js new file: tools/webretro/cores/nestopia_libretro.wasm new file: tools/webretro/cores/o2em_libretro.js new file: tools/webretro/cores/o2em_libretro.wasm new file: tools/webretro/cores/opera_libretro.js new file: tools/webretro/cores/opera_libretro.wasm
264 lines
15 KiB
HTML
264 lines
15 KiB
HTML
<!doctype html>
|
|
<html lang="en"><!-- #BeginTemplate "/Templates/Main.dwt" --><!-- DW6 -->
|
|
|
|
<!-- Mirrored from www.mathsisfun.com/money/compound-interest-derivation.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:39:01 GMT -->
|
|
<head>
|
|
<!-- #BeginEditable "doctitle" -->
|
|
<title>Compound Interest Derivations</title>
|
|
<meta name="description" content="Showing how the formulas are worked out, with Examples!" />
|
|
<!-- #EndEditable -->
|
|
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
|
|
<meta http-equiv="content-type" content="text/html; charset=utf-8">
|
|
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
|
|
<meta name="HandheldFriendly" content="true">
|
|
<meta http-equiv="pics-label" content='(PICS-1.1 "http://www.classify.org/safesurf/" L gen true for "http://www.mathsisfun.com" r (SS~~000 1))'>
|
|
<link rel="stylesheet" type="text/css" href="../style3.css" />
|
|
<script src="../main3.js" type="text/javascript"></script>
|
|
</head>
|
|
|
|
<body id="bodybg">
|
|
<div class="bg">
|
|
<div id="stt"></div>
|
|
<div id="hdr"></div>
|
|
<div id="logo"><a href="../index.html"><img src="../images/style/logo.svg" alt="Math is Fun" /></a></div>
|
|
<div id="gtran"><script type="text/javascript">document.write(getTrans());</script></div>
|
|
<div id="gplus"><script type="text/javascript">document.write(getGPlus());</script></div>
|
|
<div id="adTopOuter" class="centerfull noprint">
|
|
<div id="adTop">
|
|
<script type="text/javascript">document.write(getAdTop());</script>
|
|
</div>
|
|
</div>
|
|
<div id="adHide">
|
|
<div id="showAds1"><a href="javascript:showAds()">Show Ads</a></div>
|
|
<div id="hideAds1"><a href="javascript:hideAds()">Hide Ads</a><br>
|
|
<a href="../about-ads.html">About Ads</a></div>
|
|
</div>
|
|
<div id="menuWide" class="menu">
|
|
<script type="text/javascript">document.write(getMenu(0));</script>
|
|
</div>
|
|
<div id="linkto">
|
|
<div id="linktort"><script type="text/javascript">document.write(getLinks());</script></div>
|
|
</div>
|
|
<div id="search" role="search"><script type="text/javascript">document.write(getSearch());</script></div>
|
|
<div id="menuSlim" class="menu">
|
|
<script type="text/javascript">document.write(getMenu(1));</script>
|
|
</div>
|
|
<div id="menuTiny" class="menu">
|
|
<script type="text/javascript">document.write(getMenu(2));</script>
|
|
</div>
|
|
<div id="extra"></div>
|
|
</div>
|
|
<div id="content" role="main"><!-- #BeginEditable "Body" -->
|
|
<h1 align="center">Compound Interest Formula Derivations</h1>
|
|
<p align="center"><i>Showing how the formulas are worked out, with Examples!</i></p>
|
|
<p>With <a href="compound-interest.html">Compound Interest</a> we work out the interest for the first period, add it to the total, and <b>then</b> calculate the interest for the next period, and so on ..., like this:</p>
|
|
<div align="center"><img src="images/interest-compound-flow.svg" alt="interest compound $1000, 10%=$100, $1100, 10%=$110, $1210, 10%=$121, etc " /></div>
|
|
<h2>Make A Formula</h2>
|
|
<p>Let's look at the first year to begin with:</p>
|
|
<p align="center">$1,000.00 + ($1,000.00 × 10%) = <b>$1,100.00</b></p>
|
|
<p>We can rearrange it like this: </p>
|
|
<p class="center"><img src="images/interest-compound1.svg" alt="interest compound step-by-step" /></p>
|
|
<p class="large" align="center">So, adding 10% interest is the same as multiplying by 1.10</p>
|
|
<p><i>(Note: the Interest Rate was turned into a decimal by dividing by 100: <b>10% = 10/100 = 0.10</b>, read <a href="../percentage.html">Percentages</a> to learn more.)</i></p>
|
|
<h3>And that formula works for any year:</h3>
|
|
<ul>
|
|
<li>We could do the next year like this: <b>$1,100 × 1.10 = $1,210</b></li>
|
|
<li>And then continue to the following year: <b>$1,210 × 1.10 = $1,331</b></li>
|
|
<li>etc...</li>
|
|
</ul>
|
|
<p>So it works like this:</p>
|
|
<p align="center"><img src="images/interest-compound-flow2.svg" alt="interest compound $1000 x1.1 $1100 x1.1 $1210 x1.1 ..." />
|
|
<br /> </p>
|
|
<h3>In fact we could go straight from the start to Year 5 if we<b> multiply 5 times</b>:<br />
|
|
</h3>
|
|
<p align="center" class="larger">$1,000 × 1.10 × 1.10 × 1.10 × 1.10 × 1.10 = <b>$1,610.51</b></p>
|
|
<p>But it is easier to write down a series of multiplies using <a href="../exponent.html">Exponents (or Powers)</a> like this:</p>
|
|
<div align="center"><img src="images/fv-example.gif" width="281" height="42" alt="$1000 x 1.10^5 = $1610.51" /> </div>
|
|
<h2>The Formula</h2>
|
|
<p>We have been using a real example, but let us make it more general by <b>using letters instead of numbers</b>, like this:</p>
|
|
<p align="center"><img src="images/fv-formula.svg" alt="PV x (1+r)^n = FV" />
|
|
<br> </p>
|
|
<p>(Compare this to the calculation above it: PV = $1,000, r = 0.10, n = 5, and FV = $1,610.51)</p>
|
|
<ul>
|
|
<li>When the interest rate is annual, then <b>n</b> is the number of years</li>
|
|
<li>When the interest rate is monthly, then <b>n</b> is the number of months</li>
|
|
<li>and so on</li>
|
|
</ul>
|
|
<p> </p>
|
|
<h3>Examples</h3>
|
|
<p>How about some examples ...
|
|
<br /> ... what if the loan went for <b>15 Years</b>? ... just change the "n" value:</p>
|
|
<p align="center"><img src="images/fv-example2.gif" width="281" height="41" alt="$1000 x 1.10^15 = $4177.25" /></p>
|
|
<p>... and what if the loan was for 5 years, but the interest rate was only 6%? Here:</p>
|
|
<p align="center"><img src="images/fv-example3.gif" width="281" height="41" alt="$1000 x 1.06^5 = $1338.23" /></p>
|
|
<p>(Note that it is <b>1.06</b>, not 1.6)</p>
|
|
<h2>The Four Formulas</h2>
|
|
<p>So, the basic formula for Compound Interest is:</p>
|
|
<p class="large center">FV = PV (1+r)<sup>n</sup></p>
|
|
<ul>
|
|
<li>FV = Future Value, </li>
|
|
<li>PV = Present Value, </li>
|
|
<li>r = Interest Rate (as a decimal value), and </li>
|
|
<li>n = Number of Periods</li>
|
|
</ul>
|
|
<p>With that we can work out the Future Value <b>FV</b> when we know the Present Value <b>PV</b>, the Interest Rate <b>r</b> and Number of Periods <b>n</b></p>
|
|
<p>And we can <b>rearrange</b> that formula to find FV, the Interest Rate or the Number of Periods when we know the other three.</p>
|
|
<p>Here are all four furmulas:</p>
|
|
<table border="0" align="center">
|
|
<tr>
|
|
<td align="center" class="large"><span class="large center">FV = PV (1+r)<sup>n</sup></span></td>
|
|
<td> </td>
|
|
<td>Find the <b>Future Value</b> when we know a Present Value, the Interest Rate and number of Periods.</td>
|
|
</tr>
|
|
<tr>
|
|
<td align="center" class="large"> </td>
|
|
<td> </td>
|
|
<td> </td>
|
|
</tr>
|
|
<tr>
|
|
<td width="240" align="center" class="large">PV = FV / (1+r)<sup>n</sup></td>
|
|
<td> </td>
|
|
<td>Find the <b>Present Value</b> when we know a Future Value, the Interest Rate and number of Periods.</td>
|
|
</tr>
|
|
<tr>
|
|
<td width="240" align="center" class="large"> </td>
|
|
<td> </td>
|
|
<td> </td>
|
|
</tr>
|
|
<tr>
|
|
<td width="240" align="center" class="large">r = ( FV / PV )<sup>1/n</sup> - 1</td>
|
|
<td> </td>
|
|
<td>Find the <b>Interest Rate</b> when we know the Present Value, Future Value and number of Periods.</td>
|
|
</tr>
|
|
<tr>
|
|
<td width="240" align="center" class="large"> </td>
|
|
<td> </td>
|
|
<td> </td>
|
|
</tr>
|
|
<tr>
|
|
<td width="240" align="center" class="large">n = <span class="intbl">
|
|
<em>ln(FV / PV)</em>
|
|
<strong>ln(1 + r)</strong>
|
|
</span></td>
|
|
<td> </td>
|
|
<td>Find the number of <b>Periods</b> when we know the Present Value, Future Value and Interest Rate</td>
|
|
</tr>
|
|
</table>
|
|
<br />
|
|
<p align="center" class="larger"> </p>
|
|
<p align="center" class="larger">How did we get those other three formulas? Read On!</p>
|
|
<h2>Working Out the Present Value</h2>
|
|
<div class="example">
|
|
<h3>Example: Sam wants to reach $2,000 in 5 Years at 10% annual interest. How much should Sam start with?</h3> </div>
|
|
<p>In other words, we know a Future Value, and <b>want to know a Present Value</b>.</p>
|
|
<p>We can just rearrange the formula to suit ... dividing both sides by (1+r)<sup>n</sup> to give us:</p>
|
|
<div class="tbl">
|
|
<div class="row"><span class="left">Start with:</span><span class="right">FV = PV (1+r)<sup>n</sup></span></div>
|
|
<div class="row"><span class="left">Swap sides:</span><span class="right">PV (1+r)<sup>n</sup> = FV</span></div>
|
|
<div class="row"><span class="left">Divide both sides by (1+r)<sup>n</sup>:</span><span class="right">PV = <span class="intbl">
|
|
<em>FV</em>
|
|
<strong>(1+r)<sup>n</sup></strong>
|
|
</span></span></div>
|
|
</div>
|
|
<p>So now we can calculate the answer:</p>
|
|
<div class="example">
|
|
<h3>Example (continued):</h3>
|
|
<p class="center"><b>PV</b> = $2,000 / (1+0.10)<sup>5</sup> = $2,000 / 1.61051 = <b>$1,241.84</b></p>
|
|
<p>So Sam should start with <b>$1,241.84</b></p>
|
|
</div>
|
|
<p>It works like this:</p>
|
|
<p align="center"><img src="images/pv-vs-fv.svg" alt="pv vs fv" /></p>
|
|
<div class="example">
|
|
<h3><b>Another Example:</b> How much do you need to invest now, to get $10,000 in 10 years at 8% interest rate?</h3>
|
|
<p align="center">PV = $10,000 / (1+0.08)<sup>10</sup> = $10,000 / 2.1589 = <b>$4,631.93</b></p>
|
|
<p>So, <b>$4,631.93</b> invested at 8% for 10 Years grows to $10,000</p>
|
|
</div>
|
|
<h2>Working Out The Interest Rate</h2>
|
|
<div class="example">
|
|
<h3>Example: Sam has only $1,000, and wants it to grow to $2,000 in 5 Years, what interest rate should Sam be looking for?</h3> </div>
|
|
<p>We need a rearrangement of the first formula to work it out:</p>
|
|
<div class="tbl">
|
|
<div class="row"><span class="left">Start with:</span><span class="right">FV = PV (1+r)<sup>n</sup></span></div>
|
|
<div class="row"><span class="left">Swap sides:</span><span class="right">PV (1+r)<sup>n</sup> = FV</span></div>
|
|
<div class="row"><span class="left">Divide both sides by PV:</span><span class="right">(1+r)<sup>n</sup> = <span class="intbl">
|
|
<em>FV</em>
|
|
<strong>PV</strong>
|
|
</span></span></div>
|
|
<div class="row"><span class="left">Take <a href="../numbers/nth-root.html">nth root</a> of both sides:</span><span class="right">1+r = ( <span class="intbl">
|
|
<em>FV</em>
|
|
<strong>PV</strong>
|
|
</span> )<sup>1/n</sup></span></div>
|
|
<div class="row"><span class="left">Subtract 1 from both sides:</span><span class="right">r = ( <span class="intbl">
|
|
<em>FV</em>
|
|
<strong>PV</strong>
|
|
</span> )<sup>1/n</sup> − 1</span></div>
|
|
</div>
|
|
<p><i>(Note: to understand the step "take nth root" please read <a href="../algebra/exponent-fractional.html">Fractional Exponents</a>)</i></p>
|
|
<p>The result is:</p>
|
|
<p class="center larger">r = ( FV / PV )<sup>1/n</sup> − 1 </p>
|
|
<p>Now we have the formula, it is just a matter of "plugging in" the values to get the result:</p>
|
|
<div class="example">
|
|
<h3>Example (continued):</h3>
|
|
<p align="center">r = ( $2,000 / $1,000 )<sup>1/5</sup> − 1
|
|
<br> = ( 2 )<sup>0.2</sup> − 1
|
|
<br> = 1.1487 − 1
|
|
<br> = <b>0.1487</b></p>
|
|
<p>And 0.1487 as a percentage is <b>14.87%</b></p>
|
|
<p>So Sam needs <b>14.87%</b> to turn $1,000 into $2,000 in 5 years.</p>
|
|
</div>
|
|
<div class="example">
|
|
<h3><b>Another Example:</b> What interest rate do you need to turn $1,000 into $5,000 in 20 Years?</h3>
|
|
<p align="center">r = ( $5,000 / $1,000 )<sup>1/20</sup> − 1 = ( 5 )<sup>0.05</sup> − 1 = 1.0838 − 1 = <b>0.0838</b></p>
|
|
<p>And 0.0838 as a percentage is <b>8.38%</b>. So 8.38% will turn $1,000 into $5,000 in 20 Years.</p>
|
|
</div>
|
|
<h2>Working Out How Many Periods</h2>
|
|
<div class="example">
|
|
<h3>Example: Sam can only get a 10% interest rate. How many years will it take Sam to get $2,000?</h3> </div>
|
|
<p>When we want to know how many periods it takes to turn $1,000 into $2,000 at 10% interest, we can rearrange the basic formula.</p>
|
|
<p>But we need to use the natural logarithm function <i><b>ln() </b></i>to do it. </p>
|
|
<div class="tbl">
|
|
<div class="row"><span class="left">Start with:</span><span class="right">FV = PV (1+r)<sup>n</sup></span></div>
|
|
<div class="row"><span class="left">Swap sides:</span><span class="right">PV (1+r)<sup>n</sup> = FV</span></div>
|
|
<div class="row"><span class="left">Divide both sides by PV:</span><span class="right">(1+r)<sup>n</sup> = <em>FV / PV</em></span></div>
|
|
<div class="row"><span class="left">Use <a href="../algebra/exponents-logarithms.html">logarithms</a>:</span><span class="right">ln(1+r) × n = ln( <em>FV / PV</em> )</span></div>
|
|
<div class="row"><span class="left">Divide both sides by ln(1+r):</span><span class="right">n = <span class="intbl">
|
|
<em>ln(
|
|
FV / PV )</em>
|
|
<strong>ln(1+r)</strong>
|
|
</span></span></div>
|
|
</div>
|
|
<p><i>(Note: to understand the step "use logarithms" please read <a href="../algebra/exponents-logarithms.html">Working with Exponents and Logarithms</a>).</i></p>
|
|
<p>Now let's "plug in" the values:</p>
|
|
<div class="example">
|
|
<h3>Example (continued):</h3>
|
|
<p align="center">n = ln( $2,000 / $1,000 ) / ln( 1 + 0.10 ) = ln(2)/ln(1.10) = 0.69315/0.09531 = <b>7.27</b></p>
|
|
<p>Magic! It will need <b>7.27 years</b> to turn $1,000 into $2,000 at 10% interest.</p>
|
|
<p>Poor Sam will have to wait over 7 years.</p>
|
|
</div>
|
|
<p> </p>
|
|
<div class="example">
|
|
<h3><b>Another Example:</b> How many years to turn $1,000 into $10,000 at 5% interest?</h3>
|
|
<p align="center">n = ln( $10,000 / $1,000 ) / ln( 1 + 0.05 ) = ln(10)/ln(1.05) = 2.3026/0.04879 = <b>47.19</b></p>
|
|
<p>47 Years! But we are talking about a 10-fold increase, at only 5% interest.</p>
|
|
</div>
|
|
<h2>Conclusion</h2>
|
|
<p>Knowing how the formulas are derived and used makes it easier for you to remember them, and to use them in different situations.</p>
|
|
<h2> </h2>
|
|
<div class="related"><a href="interest.html">Introduction to Interest</a> <a href="investment-graph.html">Investment Graph</a> <a href="compound-interest-calculator.html">Compound Interest Calculator</a> <a href="index.html">Money Index</a></div>
|
|
<!-- #EndEditable --></div>
|
|
<div id="adend" class="centerfull noprint">
|
|
<script type="text/javascript">document.write(getAdEnd());</script>
|
|
</div>
|
|
<div id="footer" class="centerfull noprint">
|
|
<script type="text/javascript">document.write(getFooter());</script>
|
|
</div>
|
|
<div id="copyrt">
|
|
Copyright © 2018 MathsIsFun.com
|
|
</div>
|
|
|
|
<script type="text/javascript">document.write(getBodyEnd());</script>
|
|
</body>
|
|
<!-- #EndTemplate -->
|
|
<!-- Mirrored from www.mathsisfun.com/money/compound-interest-derivation.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:39:01 GMT -->
|
|
</html>
|