lkarch.org/tools/mathisfun/www.mathsisfun.com/data/standard-deviation-formulas.html
Lucas Kent e39465ad2f Changes to be committed:
new file:   Files/flashplayer_32_sa.exe
	new file:   favicon.ico
	new file:   globe.gif
	new file:   imgs/download.png
	new file:   imgs/zuck.jpg
	new file:   index.html
	new file:   other.ico
	new file:   script.js
	new file:   site.webmanifest
	new file:   sitemap.html
	new file:   styles/backround.css
	new file:   styles/border.css
	new file:   styles/fonts/Titillium_Web/OFL.txt
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf
	new file:   styles/fonts/webfontkit-20221027-163353/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2
	new file:   styles/fonts/webfontkit-20221027-165950/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2
	new file:   styles/style.css
	new file:   tools/2048/.gitignore
	new file:   tools/2048/.jshintrc
	new file:   tools/2048/CONTRIBUTING.md
	new file:   tools/2048/LICENSE.txt
	new file:   tools/2048/README.md
	new file:   tools/2048/Rakefile
	new file:   tools/2048/favicon.ico
	new file:   tools/2048/index.html
	new file:   tools/2048/js/animframe_polyfill.js
	new file:   tools/2048/js/application.js
	new file:   tools/2048/js/bind_polyfill.js
	new file:   tools/2048/js/classlist_polyfill.js
	new file:   tools/2048/js/game_manager.js
	new file:   tools/2048/js/grid.js
	new file:   tools/2048/js/html_actuator.js
	new file:   tools/2048/js/keyboard_input_manager.js
	new file:   tools/2048/js/local_storage_manager.js
	new file:   tools/2048/js/tile.js
    new file:   tools/2048/meta/apple-touch-icon.png
	new file:   tools/webretro/cores/neocd_libretro.js
	new file:   tools/webretro/cores/neocd_libretro.wasm
	new file:   tools/webretro/cores/nestopia_libretro.js
	new file:   tools/webretro/cores/nestopia_libretro.wasm
	new file:   tools/webretro/cores/o2em_libretro.js
	new file:   tools/webretro/cores/o2em_libretro.wasm
	new file:   tools/webretro/cores/opera_libretro.js
	new file:   tools/webretro/cores/opera_libretro.wasm
2022-11-02 08:40:01 -04:00

323 lines
14 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html lang="en"><!-- #BeginTemplate "/Templates/Advanced.dwt" --><!-- DW6 -->
<!-- Mirrored from www.mathsisfun.com/data/standard-deviation-formulas.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:38:16 GMT -->
<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
<!-- #BeginEditable "doctitle" -->
<title>Standard Deviation Formulas</title>
<!-- #EndEditable -->
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
<meta name="HandheldFriendly" content="true">
<meta name="referrer" content="always">
<link rel="preload" href="../images/style/font-champ-bold.ttf" as="font" type="font/ttf" crossorigin="">
<link rel="preload" href="../style4.css" as="style">
<link rel="preload" href="../main4.js" as="script">
<link rel="stylesheet" href="../style4.css">
<script src="../main4.js" defer="defer"></script>
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async="" src="https://www.googletagmanager.com/gtag/js?id=UA-29771508-1"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'UA-29771508-1');
</script>
</head>
<body id="bodybg" class="adv">
<div id="stt"></div>
<div id="adTop"></div>
<header>
<div id="hdr"></div>
<div id="tran"></div>
<div id="adHide"></div>
<div id="cookOK"></div>
</header>
<div class="mid">
<nav>
<div id="menuWide" class="menu"></div>
<div id="logo"><a href="../index.html"><img src="../images/style/logo-adv.svg" alt="Math is Fun Advanced"></a></div>
<div id="search" role="search"></div>
<div id="linkto"></div>
<div id="menuSlim" class="menu"></div>
<div id="menuTiny" class="menu"></div>
</nav>
<div id="extra"></div>
<article id="content" role="main">
<!-- #BeginEditable "Body" -->
<h1 class="center">Standard Deviation Formulas</h1>
<p class="center"><i>Deviation just means how far from the normal</i></p>
<h2><b><a name="Top" id="Top"></a></b>Standard Deviation</h2>
<p>The Standard Deviation is a measure of <b>how spread
out numbers are</b>.</p>
<p class="center">You might like to read <a href="standard-deviation.html">this simpler page on Standard Deviation</a> first.</p>
<p>But here we explain <b>the formulas</b>.</p>
<p>The symbol for Standard Deviation is <b class="larger">σ</b> (the Greek letter sigma).</p>
<div class="def">
<p>This is the formula for Standard Deviation:</p>
<p class="center"><img src="images/standard-deviation-formula.svg" alt="square root of [ (1/N) times Sigma i=1 to N of (xi - mu)^2 ]" height="59" width="200"></p>
</div>
<p class="larger center"><b><i>Say what?</i></b> Please explain!</p>
<p>OK. Let us explain it step by step.</p>
<p>Say we have a bunch of numbers like 9, 2, 5, 4, 12, 7, 8, 11.</p>
<p>To calculate the standard deviation of those numbers:</p>
<ul>
<div class="bigul">
<li>1. Work out the <a href="../mean.html">Mean</a> (the simple average
of the numbers)</li>
<li>2. Then for each number: subtract the Mean and square the result</li>
<li>3. Then work out the mean of <b>those</b> squared differences.</li>
<li>4. Take the square root of that and we are done!</li>
</div>
</ul>
<p>The formula actually says all of that, and I will show you how.</p>
<h2>The Formula Explained</h2>
<p>First, let us have some example values to work on:</p>
<div class="example">
<p style="float:left; margin: 10px;"><img src="images/rose.jpg" alt="rose" height="111" width="130"></p>
<h3>Example: Sam has 20 Rose Bushes.</h3>
<p>The number of flowers on each bush is</p>
<p class="center larger">9, 2, 5, 4, 12, 7, 8, 11, 9, 3, 7, 4, 12, 5, 4, 10, 9, 6, 9, 4</p>
<p>Work out the Standard Deviation.</p>
</div>
<h3>&nbsp;</h3>
<h3>Step 1. Work out the mean</h3>
<p>In the formula above <b>μ</b> (the greek letter "mu") is the <a href="../mean.html">mean</a> of all our values ...</p>
<div class="example">
<h3>Example: 9, 2, 5, 4, 12, 7, 8, 11, 9, 3, 7, 4, 12, 5, 4, 10, 9, 6, 9, 4</h3>
<p>The mean is:</p>
<p class="center larger"><span class="intbl">
<em>9+2+5+4+12+7+8+11+9+3+7+4+12+5+4+10+9+6+9+4</em>
<strong>20</strong>
</span></p>
<p class="center larger">=
<span class="intbl">
<em>140</em>
<strong>20</strong>
</span> = <b>7</b></p>
<p class="center">And so <b>μ = 7</b></p>
</div>
<p>&nbsp;</p>
<h3>Step 2. Then for each number: subtract the Mean and square the result</h3>
<p>This is the part of the formula that says:</p>
<p class="center larger"><img src="images/standard-deviation-part1.svg" alt="(xi - mu)^2" height="32" width="75"></p>
<p>So what is <span class="times"><i>x<sub>i</sub></i></span> ? They are the individual x values 9, 2, 5, 4, 12, 7, etc...</p>
<p>In other words <span class="times"><i>x<sub>1</sub></i></span> = 9, <span class="times"><i>x<sub>2</sub></i></span> = 2, <span class="times"><i>x<sub>3</sub></i></span> = 5, etc.</p>
<p>So it says "for each value, subtract the mean and square the result", like this</p>
<div class="example">
<h3>Example (continued):</h3>
<p>(9 - 7)<sup>2</sup> = (2)<sup>2</sup> = <b>4</b></p>
<p>(2 - 7)<sup>2</sup> = (-5)<sup>2</sup> = <b>25</b></p>
<p>(5 - 7)<sup>2</sup> = (-2)<sup>2</sup> = <b>4</b></p>
<p>(4 - 7)<sup>2</sup> = (-3)<sup>2</sup> = <b>9</b></p>
<p>(12 - 7)<sup>2</sup> = (5)<sup>2</sup> = <b>25</b></p>
<p>(7 - 7)<sup>2</sup> = (0)<sup>2</sup> = <b>0</b></p>
<p>(8 - 7)<sup>2</sup> = (1)<sup>2</sup> = <b>1</b></p>
<p>... etc ...</p>
<p>And we get these results:</p>
<p class="center larger">4, 25, 4, 9, 25, 0, 1, 16, 4, 16, 0, 9, 25, 4, 9, 9, 4, 1, 4, 9</p>
</div>
<p>&nbsp;</p>
<h3>Step 3. Then work out the mean of those squared differences.</h3>
<p>To work out the mean, <b>add up all the values</b> then <b>divide by how many</b>.</p>
<p>First add up all the values from the previous step.</p>
<p>But how do we say "add them all up" in mathematics? We use "Sigma": <span class="times">Σ</span></p>
<div class="center80">
<p>The handy <a href="../algebra/sigma-notation.html">Sigma Notation</a> says to sum up as many terms as we want:</p>
<p class="center"><img src="../algebra/images/sigma-notation.svg" alt="Sigma Notation" style="max-width:100%" height="118" width="451"><br>
Sigma Notation</p>
</div>
<p>We want to add up all the values from 1 to N, where N=20 in our case because there are 20 values:</p>
<div class="example">
<h3>Example (continued):</h3>
<p class="center"><img src="images/standard-deviation-part2.svg" alt="sigma i=1 to N of (xi - mu)^2" height="51" width="103"></p>
<p class="center">Which means: Sum all values from (x<sub>1</sub>-7)<sup>2</sup> to (x<sub>N</sub>-7)<sup>2</sup></p>
<p align="left">&nbsp;</p>
<p align="left">We already calculated (x<sub>1</sub>-7)<sup>2</sup>=4 etc. in the previous step, so just sum them up:</p>
<p class="center larger">= 4+25+4+9+25+0+1+16+4+16+0+9+25+4+9+9+4+1+4+9 = <b>178</b></p>
</div>
<p>But that isn't the mean yet, we need to <b>divide by how many</b>, which is done by <b>multiplying by 1/N</b> (the same as dividing by N):</p>
<div class="example">
<h3>Example (continued):</h3>
<p class="center"><img src="images/standard-deviation-part3.svg" alt="(1/N) times sigma i=1 to N of (xi - mu)^2" height="51" width="133"></p>
<p class="center larger">Mean of squared differences = (1/20) × 178 = <b>8.9</b></p>
<p class="center">(Note: this value is called the "Variance")</p>
</div><p>&nbsp;</p>
<h3>Step 4. Take the square root of that:</h3>
<div class="example">
<h3>Example (concluded):</h3>
<p class="center"><img src="images/standard-deviation-formula.svg" alt="square root of [ (1/N) times Sigma i=1 to N of (xi - mu)^2 ]" height="59" width="200"></p>
<p class="center larger">σ = √(8.9) = <b>2.983...</b></p>
</div>
<p>DONE!</p>
<p>&nbsp;</p>
<h2>Sample Standard Deviation</h2>
<p>But wait, there is more ...</p>
<p class="center">... sometimes our data is only a <b>sample</b> of the whole population.</p>
<div class="example">
<p style="float:left; margin: 10px;"><img src="images/rose.jpg" alt="rose" height="111" width="130"></p>
<h3>Example: Sam has <b>20</b> rose bushes, but only counted the flowers on <b>6 of them</b>!</h3>
<p>The "population" is all 20 rose bushes,</p>
<p>and the "sample" is the 6 bushes that Sam counted the flowers of.</p>
<p>Let us say Sam's flower counts are:</p>
<p class="center large">9, 2, 5, 4, 12, 7</p>
</div>
<p>We can still <b>estimate</b> the Standard Deviation.</p>
<p>But when we use the sample as an <b>estimate of the whole population</b>, the Standard Deviation formula changes to this:</p>
<div class="def">
<p>The formula for <b>Sample Standard Deviation</b>:</p>
<p class="center"><img src="images/standard-deviation-sample.svg" alt="square root of [ (1/(N-1)) times Sigma i=1 to N of (xi - xbar)^2 ]" height="58" width="210"></p>
</div>
<p class="center larger">The important change is <b> "N-1" instead of "N"</b> (which is called "Bessel's correction").</p>
<div class="center80">
<p>The symbols also change to reflect that we are working on a sample instead of the whole population:</p>
<ul>
<li>The mean is now <span class="times" style="text-decoration:overline">x</span> (called "x-bar") for <b>sample mean</b>, instead of <b>μ</b> for the population mean,</li>
<li>And the answer is <b>s</b> (for sample standard deviation) instead of <b>σ</b>.</li>
</ul>
<p>But they do not affect the calculations. <b>Only N-1 instead of N changes the calculations.</b></p>
</div>
<p>&nbsp;</p>
<p>OK, let us now use the <b>Sample Standard Deviation</b>:</p>
<h3>Step 1. Work out the mean</h3>
<div class="example">
<h3>Example 2: Using sampled values 9, 2, 5, 4, 12, 7</h3>
<p>The mean is (9+2+5+4+12+7) / 6 = 39/6 = 6.5</p>
<p>So:</p>
<p class="center"><span class="times" style="text-decoration:overline">x</span> = 6.5</p>
</div>
<p>&nbsp;</p>
<h3>Step 2. Then for each number: subtract the Mean and square the result</h3>
<div class="example">
<h3>Example 2 (continued):</h3>
<p>(9 - 6.5)<sup>2</sup> = (2.5)<sup>2</sup> = 6.25</p>
<p>(2 - 6.5)<sup>2</sup> = (-4.5)<sup>2</sup> = 20.25</p>
<p>(5 - 6.5)<sup>2</sup> = (-1.5)<sup>2</sup> = 2.25</p>
<p>(4 - 6.5)<sup>2</sup> = (-2.5)<sup>2</sup> = 6.25</p>
<p>(12 - 6.5)<sup>2</sup> = (5.5)<sup>2</sup> = 30.25</p>
<p>(7 - 6.5)<sup>2</sup> = (0.5)<sup>2</sup> = 0.25</p>
</div>
<p>&nbsp;</p>
<h3>Step 3. Then work out the mean of those squared differences.</h3>
<p>To work out the mean, <b>add up all the values</b> then <b>divide by how many</b>.</p>
<p>But hang on ... we are calculating the <b>Sample</b> Standard Deviation, so instead of dividing by how many (N), we will divide by <b>N-1</b></p>
<div class="example">
<h3>Example 2 (continued):</h3>
<p class="center large">Sum = 6.25 + 20.25 + 2.25 + 6.25 + 30.25 + 0.25 = <b>65.5</b></p>
<p class="center large">Divide by <b>N-1</b>: (1/5) × 65.5 = <b>13.1</b></p>
<p class="center">(This value is called the "Sample Variance")</p>
</div>
<p>&nbsp;</p>
<h3>Step 4. Take the square root of that:</h3>
<div class="example">
<h3>Example 2 (concluded):</h3>
<p class="center"><img src="images/standard-deviation-sample.svg" alt="square root of [ (1/(N-1)) times Sigma i=1 to N of (xi - xbar)^2 ]" height="58" width="210"></p>
<p class="center larger">s = √(13.1) = <b>3.619...</b></p>
</div>
<p>DONE!</p>
<h2>Comparing</h2>
<p>Using the whole <b>population</b> we got: Mean = <b>7</b>, Standard Deviation = <b>2.983...</b></p>
<p>Using the <b>sample</b> we got: Sample Mean = <b>6.5</b>, Sample Standard Deviation = <b>3.619...</b></p>
<p>Our Sample Mean was wrong by 7%, and our Sample Standard Deviation was wrong by 21%.</p>
<h2>Why Take a Sample?</h2>
<p>Mostly because it is easier and cheaper.</p>
<div class="example">
<p>Imagine you want to know what the whole country thinks ... you can't ask millions of people, so instead you ask maybe 1,000 people.</p>
</div>
<p>There is a nice quote (possibly by Samuel Johnson):</p>
<p class="center"><i>"You don't have to eat the whole animal to know that the meat is tough."&nbsp;</i></p>
<p>This is the essential idea of sampling. To find out information about the population (such as mean and standard deviation), we do not need to look at <b>all</b> members of the population; we only need a sample. &nbsp;</p>
<p>But when we take a sample, we lose some accuracy.</p>
<p>Have a play with this at <a href="normal-distribution-simulator.html">Normal Distribution Simulator</a>.</p>
<p>&nbsp;</p>
<h2>Summary</h2>
<table style="border: 0; margin:auto;">
<tbody>
<tr>
<td style="text-align:right;">
<p>The <b>Population</b> Standard Deviation:</p></td>
<td style="text-align:right;">&nbsp;</td>
<td><img src="images/standard-deviation-formula.svg" alt="square root of [ (1/N) times Sigma i=1 to N of (xi - mu)^2 ]" height="59" width="200"></td>
</tr>
<tr>
<td style="text-align:right;">The <b>Sample</b> Standard Deviation:</td>
<td style="text-align:right;">&nbsp;</td>
<td><img src="images/standard-deviation-sample.svg" alt="square root of [ (1/(N-1)) times Sigma i=1 to N of (xi - xbar)^2 ]" height="58" width="210"></td>
</tr>
</tbody></table>
<p>&nbsp;</p>
<div class="questions">699, 1472, 1473, 1474</div>
<div class="related">
<a href="../mean.html">Mean</a>
<a href="../accuracy-precision.html">Accuracy and Precision</a>
<a href="standard-deviation-calculator.html">Standard Deviation Calculator</a>
<a href="index.html">Probability and Statistics</a>
</div>
<!-- #EndEditable -->
</article>
<div id="adend" class="centerfull noprint"></div>
<footer id="footer" class="centerfull noprint"></footer>
<div id="copyrt">Copyright © 2021 MathsIsFun.com</div>
</div>
</body><!-- #EndTemplate -->
<!-- Mirrored from www.mathsisfun.com/data/standard-deviation-formulas.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:38:17 GMT -->
</html>