lkarch.org/tools/mathisfun/www.mathsisfun.com/calculus/concave-up-down-convex.html
Lucas Kent e39465ad2f Changes to be committed:
new file:   Files/flashplayer_32_sa.exe
	new file:   favicon.ico
	new file:   globe.gif
	new file:   imgs/download.png
	new file:   imgs/zuck.jpg
	new file:   index.html
	new file:   other.ico
	new file:   script.js
	new file:   site.webmanifest
	new file:   sitemap.html
	new file:   styles/backround.css
	new file:   styles/border.css
	new file:   styles/fonts/Titillium_Web/OFL.txt
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf
	new file:   styles/fonts/webfontkit-20221027-163353/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2
	new file:   styles/fonts/webfontkit-20221027-165950/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2
	new file:   styles/style.css
	new file:   tools/2048/.gitignore
	new file:   tools/2048/.jshintrc
	new file:   tools/2048/CONTRIBUTING.md
	new file:   tools/2048/LICENSE.txt
	new file:   tools/2048/README.md
	new file:   tools/2048/Rakefile
	new file:   tools/2048/favicon.ico
	new file:   tools/2048/index.html
	new file:   tools/2048/js/animframe_polyfill.js
	new file:   tools/2048/js/application.js
	new file:   tools/2048/js/bind_polyfill.js
	new file:   tools/2048/js/classlist_polyfill.js
	new file:   tools/2048/js/game_manager.js
	new file:   tools/2048/js/grid.js
	new file:   tools/2048/js/html_actuator.js
	new file:   tools/2048/js/keyboard_input_manager.js
	new file:   tools/2048/js/local_storage_manager.js
	new file:   tools/2048/js/tile.js
    new file:   tools/2048/meta/apple-touch-icon.png
	new file:   tools/webretro/cores/neocd_libretro.js
	new file:   tools/webretro/cores/neocd_libretro.wasm
	new file:   tools/webretro/cores/nestopia_libretro.js
	new file:   tools/webretro/cores/nestopia_libretro.wasm
	new file:   tools/webretro/cores/o2em_libretro.js
	new file:   tools/webretro/cores/o2em_libretro.wasm
	new file:   tools/webretro/cores/opera_libretro.js
	new file:   tools/webretro/cores/opera_libretro.wasm
2022-11-02 08:40:01 -04:00

194 lines
8.3 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html lang="en"><!-- #BeginTemplate "/Templates/Advanced.dwt" --><!-- DW6 -->
<!-- Mirrored from www.mathsisfun.com/calculus/concave-up-down-convex.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:38:47 GMT -->
<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
<!-- #BeginEditable "doctitle" -->
<title>Concave Upward and Downward</title>
<meta name="description" content="Math explained in easy language, plus puzzles, games, quizzes, worksheets and a forum. For K-12 kids, teachers and parents.">
<!-- #EndEditable -->
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
<meta name="HandheldFriendly" content="true">
<meta name="referrer" content="always">
<link rel="stylesheet" href="../style4.css">
<script src="../main4.js"></script>
<script>document.write(gTagHTML())</script>
</head>
<body id="bodybg" class="adv">
<div id="stt"></div>
<div id="adTop"></div>
<header>
<div id="hdr"></div>
<div id="tran"></div>
<div id="adHide"></div>
<div id="cookOK"></div>
</header>
<div class="mid">
<nav>
<div id="menuWide" class="menu"></div>
<div id="logo"><a href="../index.html"><img src="../images/style/logo-adv.svg" alt="Math is Fun"></a></div>
<div id="search" role="search"></div>
<div id="linkto"></div>
<div id="menuSlim" class="menu"></div>
<div id="menuTiny" class="menu"></div>
</nav>
<div id="extra"></div>
<article id="content" role="main">
<!-- #BeginEditable "Body" -->
<h1 class="center">Concave Upward and Downward</h1>
<table style="border: 0; margin:auto;">
<tbody>
<tr>
<td>&nbsp;</td>
<td>&nbsp;</td>
<td>&nbsp;</td>
</tr>
<tr>
<td><b>Concave upward</b> is when the slope increases:</td>
<td>&nbsp;</td>
<td><img src="images/concave-upward.svg" alt="concave upward slope increases"></td>
</tr>
<tr>
<td><b>Concave downward</b> is when the slope decreases:</td>
<td>&nbsp;</td>
<td><img src="images/concave-downward.svg" alt="concave downward slope decreases"></td>
</tr>
</tbody></table>
<p><i>What about when the slope stays the same (straight line)? It could be both! See <a href="#slope">footnote</a>.</i></p>
<p>Here are some more examples:</p>
<p class="center"><img src="images/concave-examples.svg" alt="concave upward and downward examples"></p>
<div class="words">
<p><b>Concave Upward</b> is also called <b>Convex</b>, or sometimes <b>Convex Downward</b></p>
<p><b>Concave Downward</b> is also called <b>Concave</b>, or sometimes <b>Convex Upward</b></p>
</div>
<h2>Finding where ...</h2>
<p>Usually our task is to find <b>where</b> a curve is concave upward or concave downward:</p>
<p class="center"><br>
<img src="images/concave-sections.svg" alt="concave sections"></p>
<h2>Definition</h2>
<p>A line drawn between <b>any</b> two points on the curve won't cross over the curve:</p>
<p class="center"><img src="images/concave-upward-yes-no.svg" alt="concave upward yes and no examples"></p>
<p>Let's make a formula for that!</p>
<p>First, the line: take any two different values <b>a</b> and<b> b</b> (in the interval we are looking at):</p>
<p class="center"><img src="images/concave-upward-ab.svg" alt="concave upward between a and b"></p>
<p>Then "slide" between <b>a</b> and <b>b</b> using a value <b>t</b> (which is from 0 to 1):</p>
<p class="center larger">x = ta + (1t)b</p>
<ul>
<li>When <b>t=0</b> we get <b>x = 0a+1b = b</b></li>
<li>When <b>t=1</b> we get <b>x = 1a+0b = a</b></li>
<li>When t is between 0 and 1 we get values between <b>a</b> and <b>b</b></li>
</ul>
<p>Now work out the heights at that x-value:</p>
<table style="border: 0; margin:auto;">
<tbody>
<tr>
<td><img src="images/concave-line-t.svg" alt="concave line t"></td>
<td>&nbsp;</td>
<td>
<p>When <b>x = ta + (1t)b</b>:</p>
<ul>
<li>The curve is at <b>y = f( ta + (1t)b )</b></li>
<li>The line is at <b>y = tf(a) + (1t)f(b)</b></li>
</ul></td>
</tr>
</tbody></table>
<p>And (for <b>concave upward</b>) the line should not be below the curve:</p>
<p class="center"><img src="images/concave-upward-formula.svg" alt="concave upwnward f( ta + (1-t)b ) &lt;= tf(a) + (1-t)f(b)"></p>
<p>For <b>concave downward</b> the line should not be above the curve (<b></b> becomes <b></b>):</p>
<p class="center"><img src="images/concave-downward-formula.svg" alt="concave downward f( ta + (1-t)b ) &gt;= tf(a) + (1-t)f(b)"></p>
<p>And those are the actual definitions of <b>concave upward</b> and <b>concave downward</b>.</p>
<h2>Remembering</h2>
<p>Which way is which? Think:</p>
<p class="center"><img src="images/concave-up-cup.svg" alt="concave up: cup"><br>
<b>C</b>oncave <b>Up</b>wards = <b>CUP</b></p>
<h2>Calculus</h2>
<p><a href="derivatives-introduction.html">Derivatives</a> can help! The derivative of a function gives the slope.</p>
<ul>
<li>When the slope continually <b>increases</b>, the function is <b>concave upward</b>.</li>
<li>When the slope continually <b>decreases</b>, the function is <b>concave downward</b>.</li>
</ul>
<p>Taking the <a href="second-derivative.html">second derivative</a> actually tells us if the slope continually increases or decreases.</p>
<ul>
<li>When the second derivative is <b>positive</b>, the function is <b>concave upward</b>.</li>
<li>When the second derivative is<b> negative</b>, the function is <b>concave downward</b>.</li>
</ul>
<div class="example">
<h3>Example: the function x<sup>2</sup></h3>
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/x2-concave-upward.svg" alt="x^2 concave upward"></p>
<p>Its derivative is 2x (see <a href="derivatives-rules.html">Derivative Rules</a>)</p>
<div class="so">2x continually increases, so the function is <b>concave upward</b>. </div>
<p>Its second derivative is 2</p>
<div class="so">2 is <b>positive</b>, so the function is <b>concave upward</b>.</div>
<p>Both give the correct answer.</p></div>
<p>&nbsp;</p>
<div class="example">
<h3>Example: f(x) = 5x<sup>3</sup> + 2x<sup>2</sup> 3x</h3>
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/5x3-2x2-3x-concave.svg" alt="5x^3 + 2x^2 - 3x inflection point"></p>
<p>Let's work out the second derivative:</p>
<ul>
<li>The derivative is <b>f'(x) = 15x<sup>2</sup> + 4x 3</b> (using <a href="derivatives-rules.html">Power Rule</a>)</li>
<li>The second derivative is <b>f''(x) = 30x + 4</b> (using <a href="derivatives-rules.html">Power Rule</a>)</li>
</ul>
<p>&nbsp;</p>
<p>And <b>30x + 4</b> is negative up to x = 4/30 = 2/15, and positive from there onwards. So:</p>
<div class="so"> f(x) is <b>concave downward</b> up to x = 2/15</div>
<div class="so">f(x) is <b>concave upward</b> from x = 2/15 on</div>
<p>&nbsp;</p>
<p>Note: The point where it changes is called an <a href="inflection-points.html">inflection point</a>.</p>
</div>
<p>&nbsp;</p>
<div class="center80">
<h3><a name="slope"></a>Footnote: Slope Stays the Same</h3>
<p>What about when the slope stays the same (straight line)?</p>
<p>A straight line is acceptable for <b>concave upward</b> or <b>concave downward</b>.</p>
<p>But when we use the special terms&nbsp;<b>strictly concave upward</b> or <b>strictly concave downward</b> then a straight line is <b>not</b> OK.</p>
<div class="example">
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/2x-1.svg" alt="2x+1"></p>
<h3>Example: y = 2x + 1</h3>
<p><b>2x + 1</b> is a straight line.</p>
<p>&nbsp;</p>
<p>It is <b>concave upward</b>.<br>
It is also <b>concave downward</b>.</p>
<p>It is not <b>strictly concave upward</b>.<br>
And it is not <b>strictly concave downward</b>.</p>
</div>
</div>
<p>&nbsp;</p>
<div class="related">
<a href="index.html">Calculus Index</a>
</div>
<!-- #EndEditable -->
</article>
<div id="adend" class="centerfull noprint"></div>
<footer id="footer" class="centerfull noprint"></footer>
<div id="copyrt">Copyright © 2020 MathsIsFun.com</div>
</div>
</body><!-- #EndTemplate -->
<!-- Mirrored from www.mathsisfun.com/calculus/concave-up-down-convex.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:38:49 GMT -->
</html>