new file: Files/flashplayer_32_sa.exe new file: favicon.ico new file: globe.gif new file: imgs/download.png new file: imgs/zuck.jpg new file: index.html new file: other.ico new file: script.js new file: site.webmanifest new file: sitemap.html new file: styles/backround.css new file: styles/border.css new file: styles/fonts/Titillium_Web/OFL.txt new file: styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf new file: styles/fonts/webfontkit-20221027-163353/generator_config.txt new file: styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css new file: styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css new file: styles/fonts/webfontkit-20221027-163353/stylesheet.css new file: styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html new file: styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff new file: styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2 new file: styles/fonts/webfontkit-20221027-165950/generator_config.txt new file: styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css new file: styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css new file: styles/fonts/webfontkit-20221027-165950/stylesheet.css new file: styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html new file: styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff new file: styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2 new file: styles/style.css new file: tools/2048/.gitignore new file: tools/2048/.jshintrc new file: tools/2048/CONTRIBUTING.md new file: tools/2048/LICENSE.txt new file: tools/2048/README.md new file: tools/2048/Rakefile new file: tools/2048/favicon.ico new file: tools/2048/index.html new file: tools/2048/js/animframe_polyfill.js new file: tools/2048/js/application.js new file: tools/2048/js/bind_polyfill.js new file: tools/2048/js/classlist_polyfill.js new file: tools/2048/js/game_manager.js new file: tools/2048/js/grid.js new file: tools/2048/js/html_actuator.js new file: tools/2048/js/keyboard_input_manager.js new file: tools/2048/js/local_storage_manager.js new file: tools/2048/js/tile.js new file: tools/2048/meta/apple-touch-icon.png new file: tools/webretro/cores/neocd_libretro.js new file: tools/webretro/cores/neocd_libretro.wasm new file: tools/webretro/cores/nestopia_libretro.js new file: tools/webretro/cores/nestopia_libretro.wasm new file: tools/webretro/cores/o2em_libretro.js new file: tools/webretro/cores/o2em_libretro.wasm new file: tools/webretro/cores/opera_libretro.js new file: tools/webretro/cores/opera_libretro.wasm
319 lines
15 KiB
HTML
319 lines
15 KiB
HTML
<!doctype html>
|
|
<html lang="en">
|
|
<!-- #BeginTemplate "/Templates/Advanced.dwt" --><!-- DW6 -->
|
|
<!-- Mirrored from www.mathsisfun.com/algebra/vectors.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:36:52 GMT -->
|
|
<head>
|
|
<meta charset="UTF-8">
|
|
<!-- #BeginEditable "doctitle" -->
|
|
<title>Vectors</title>
|
|
<meta name="description" content="Math explained in easy language, plus puzzles, games, quizzes, worksheets and a forum. For K-12 kids, teachers and parents." />
|
|
<!-- #EndEditable -->
|
|
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
|
|
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
|
|
<meta name="HandheldFriendly" content="true">
|
|
<meta name="referrer" content="always">
|
|
<link rel="stylesheet" type="text/css" href="../style3.css">
|
|
<script src="../main3.js"></script>
|
|
</head>
|
|
|
|
<body id="bodybg" class="adv">
|
|
<div class="bg">
|
|
<div id="stt"></div>
|
|
<header>
|
|
<div id="hdr"></div>
|
|
<div id="logo"><a href="../index.html"><img src="../images/style/logo.svg" alt="Math is Fun"></a></div>
|
|
<div id="advText">Advanced</div>
|
|
<div id="gtran">
|
|
<script>document.write(getTrans());</script>
|
|
</div>
|
|
<div id="adTopOuter" class="centerfull noprint">
|
|
<div id="adTop">
|
|
<script>document.write(getAdTop());</script>
|
|
</div>
|
|
</div>
|
|
<div id="adHide">
|
|
<div id="showAds1"><a href="javascript:showAds()">Show Ads</a></div>
|
|
<div id="hideAds1"><a href="javascript:hideAds()">Hide Ads</a><br>
|
|
<a href="../about-ads.html">About Ads</a></div>
|
|
</div>
|
|
</header>
|
|
<nav>
|
|
<div id="menuWide" class="menu">
|
|
<script>document.write(getMenu(0));</script>
|
|
</div>
|
|
<div id="linkto">
|
|
<div id="linktort">
|
|
<script>document.write(getLinks());</script>
|
|
</div>
|
|
</div>
|
|
<div id="search" role="search">
|
|
<script>document.write(getSearch());</script>
|
|
</div>
|
|
<div id="menuSlim" class="menu">
|
|
<script>document.write(getMenu(1));</script>
|
|
</div>
|
|
<div id="menuTiny" class="menu">
|
|
<script>document.write(getMenu(2));</script>
|
|
</div>
|
|
</nav>
|
|
<div id="extra"></div>
|
|
</div>
|
|
<article id="content" role="main">
|
|
<!-- #BeginEditable "Body" -->
|
|
|
|
<h1 class="center">Vectors</h1>
|
|
|
|
<p class="center">This is a vector:</p>
|
|
<p class="center"><img src="images/vector.gif" width="142" height="81" alt="vector" /></p>
|
|
<p>A vector has <b>magnitude</b> (size) and <b>direction</b>:</p>
|
|
<p class="center"><img src="images/vector-mag-dir.svg" alt="vector magnitude and direction" /></p>
|
|
<p class="center">The length of the line shows its magnitude and the arrowhead points in the direction.</p>
|
|
<p>We can add two vectors by joining them head-to-tail:</p>
|
|
<p class="center"><img src="images/vector-add.svg" width="248" height="92" alt="vector add a+b" /></p>
|
|
<p>And it doesn't matter which order we add them, we get the same result:</p>
|
|
<p class="center"><img src="images/vector-add2.gif" width="247" height="95" alt="vector add b+a" /></p>
|
|
<div class="example">
|
|
<h3>Example: A plane is flying along, pointing North, but there is a wind coming from the North-West.</h3>
|
|
<p class="center"><img src="images/vector-airplane.svg" alt="vector airplane, propellor and wind" /></p>
|
|
<p>The two vectors (the velocity caused by the propeller, and the velocity of the wind) result in a slightly slower ground speed heading a little East of North.</p>
|
|
<p>If you watched the plane from the ground it would seem to be slipping sideways a little.</p>
|
|
<p class="center"><img src="images/vector-airplane2.gif" width="134" height="154" alt="vector airplane ahead and slightly sideways" /></p>
|
|
<p>Have you ever seen that happen? Maybe you have seen birds struggling against a strong wind that seem to fly sideways. Vectors help explain that.</p>
|
|
</div>
|
|
<p><a href="../measure/metric-speed.html">Velocity</a>, <a href="../measure/metric-acceleration.html">acceleration</a>, <a href="../physics/force.html">force</a> and many other things are vectors.</p>
|
|
<h2>Subtracting</h2>
|
|
<p>We can also subtract one vector from another:</p>
|
|
<ul>
|
|
<li>first we reverse the direction of the vector we want to subtract,</li>
|
|
<li>then add them as usual:</li>
|
|
</ul>
|
|
<p class="center"><img src="images/vector-subtract.gif" width="264" height="115" alt="vector subtract a-b = a + (-b)" /><br>
|
|
<b>a</b> − <b>b</b></p>
|
|
<h2>Notation</h2>
|
|
<p>A vector is often written in <b>bold</b>, like <b>a</b> or <b>b</b>.</p>
|
|
<table style="border: 0; margin:auto;">
|
|
<tr>
|
|
<td>A vector can also be written as the letters<br>
|
|
of its head and tail with an arrow above it, like this:</td>
|
|
<td> </td>
|
|
<td><img src="images/vector-notation.svg" alt="vector notation a=AB, head, tail" /></td>
|
|
</tr>
|
|
</table>
|
|
<h2>Calculations</h2>
|
|
<p>Now ... how do we do the calculations?</p>
|
|
<p>The most common way is to first break up vectors into x and y parts, like this:</p>
|
|
<p class="center"><img src="images/vector-xy-components.gif" width="122" height="92" alt="vector xy components" /></p>
|
|
<p class="center">The vector <b>a</b> is broken up into<br>
|
|
the two vectors <b>a<sub>x</sub></b> and <b>a<sub>y</sub></b></p>
|
|
<p class="center">(We <a href="#magdir">see later</a> how to do this.)</p>
|
|
<h2>Adding Vectors</h2>
|
|
<p>We can then add vectors by <b>adding the x parts</b> and <b>adding the y parts</b>:</p>
|
|
<p class="center"><img src="images/vector-add3.gif" width="484" height="130" alt="vector add example" /></p>
|
|
<p class="center">The vector (8, 13) and the vector (26, 7) add up to the vector (34, 20)</p>
|
|
<div class="example">
|
|
<h3>Example: add the vectors <b>a</b> = (8, 13) and <b>b</b> = (26, 7)</h3>
|
|
<p><b>c</b> = <b>a</b> + <b>b</b></p>
|
|
<p><b>c</b> = (8, 13) + (26, 7) = (8+26, 13+7) = (34, 20)</p>
|
|
</div>
|
|
<p>When we break up a vector like that, each part is called a <b>component</b>:</p>
|
|
<link rel="stylesheet" type="text/css" href="../stylejs.css"><script src="../geometry/images/geom-vector.js"></script>
|
|
<script>geomvectorMain('xy');</script>
|
|
|
|
<h2>Subtracting Vectors</h2>
|
|
<p>To subtract, first reverse the vector we want to subtract, then add.</p>
|
|
<div class="example">
|
|
<h3>Example: subtract <b>k</b> = (4, 5) from <b>v</b> = (12, 2)</h3>
|
|
<p><b>a</b> = <b>v</b> + −<b>k</b></p>
|
|
<p><b>a</b> = (12, 2) + −(4, 5) = (12, 2) + (−4, −5) = (12−4, 2−5) = (8, −3)</p>
|
|
</div>
|
|
<h2>Magnitude of a Vector</h2>
|
|
<p>The magnitude of a vector is shown by two vertical bars on either side of the vector:</p>
|
|
<p class="large center">|<b>a</b>|</p>
|
|
<p>OR it can be written with double vertical bars (so as not to confuse it with absolute value):</p>
|
|
<p class="large center">||<b>a</b>||</p>
|
|
<p>We use <a href="../pythagoras.html">Pythagoras' theorem</a> to calculate it:</p>
|
|
<p class="large center">|<b>a</b>| = √( x<sup>2</sup> + y<sup>2</sup> )</p>
|
|
<div class="example">
|
|
<h3>Example: what is the magnitude of the vector <b>b</b> = (6, 8) ?</h3>
|
|
<p>|<b>b</b>| = √( 6<sup>2</sup> + 8<sup>2</sup>) = √( 36+64) = √100 = 10</p>
|
|
</div>
|
|
<p>A vector with magnitude 1 is called a <a href="vector-unit.html">Unit Vector</a>.</p>
|
|
<h2>Vector vs Scalar</h2>
|
|
<p>A <b>scalar</b> has <b>magnitude</b> (size) <b>only</b>.</p>
|
|
<div class="def">
|
|
<p>Scalar: just a number (like 7 or −0.32) ... definitely not a vector.</p>
|
|
</div>
|
|
<p>A <b>vector</b> has <b>magnitude and direction</b>, and is often written in <b>bold</b>, so we know it is not a scalar:</p>
|
|
<ul>
|
|
<li>so <b>c</b> is a vector, it has magnitude and direction</li>
|
|
<li>but c is just a value, like 3 or 12.4</li>
|
|
</ul>
|
|
<div class="example">
|
|
<h3>Example: k<b>b</b> is actually the scalar k times the vector <b>b</b>.</h3>
|
|
</div>
|
|
<h2>Multiplying a Vector by a Scalar</h2>
|
|
<p>When we multiply a vector by a scalar it is called "scaling" a vector, because we change how big or small the vector is.</p>
|
|
<div class="example">
|
|
<h3>Example: multiply the vector <b>m</b> = (7, 3) by the scalar 3</h3>
|
|
<table style="border: 0;">
|
|
<tr>
|
|
<td><img src="images/vector-scaling.gif" width="184" height="135" alt="vector scaling" /></td>
|
|
<td> </td>
|
|
<td><b>a</b> = 3<b>m</b> = (3×7, 3×3) = (21, 9)</td>
|
|
</tr>
|
|
</table>
|
|
|
|
<p>It still points in the same direction, but is 3 times longer</p>
|
|
</div>
|
|
<p>(And now you know why numbers are called "scalars", because they "scale" the vector up or down.)</p>
|
|
<p> </p>
|
|
<h2>Multiplying a Vector by a Vector (Dot Product and Cross Product)</h2>
|
|
<table width="100%" border="0">
|
|
<tr>
|
|
<td><img src="images/dot-product-1.gif" width="164" height="139" alt="dot product magnitude and angle" /></td>
|
|
<td>
|
|
<p>How do we <b>multiply two vectors</b> together? There is more than one way!</p>
|
|
<ul>
|
|
<li>The scalar or <a href="vectors-dot-product.html">Dot Product</a> (the result is a scalar).</li>
|
|
<li>The vector or <a href="vectors-cross-product.html">Cross Product</a> (the result is a vector).</li>
|
|
</ul>
|
|
<p>(Read those pages for more details.)</p>
|
|
</td>
|
|
</tr>
|
|
</table>
|
|
<p> </p>
|
|
<h2>More Than 2 Dimensions</h2>
|
|
<p>Vectors also work perfectly well in 3 or more dimensions:</p>
|
|
<p class="center"><img src="images/vector-3da.svg" width="320" height="270" alt="vector in 3d" /><br>
|
|
<b>The vector (1, 4, 5)</b></p>
|
|
<div class="example">
|
|
<h3>Example: add the vectors <b>a</b> = (3, 7, 4) and <b>b</b> = (2, 9, 11)</h3>
|
|
<p><b>c</b> = <b>a</b> + <b>b</b></p>
|
|
<p><b>c</b> = (3, 7, 4) + (2, 9, 11) = (3+2, 7+9, 4+11) = (5, 16, 15)</p>
|
|
</div>
|
|
<div class="example">
|
|
<h3>Example: what is the magnitude of the vector <b>w</b> = (1, −2, 3) ?</h3>
|
|
<p class="center">|<b>w</b>| = √( 1<sup>2</sup> + (−2)<sup>2 </sup> + 3<sup>2 </sup>) = √( 1+4+9) = √14</p>
|
|
</div>
|
|
<p>Here is an example with 4 dimensions (but it is hard to draw!):</p>
|
|
<div class="example">
|
|
<h3>Example: subtract (1, 2, 3, 4) from (3, 3, 3, 3)</h3>
|
|
<p class="center">(3, 3, 3, 3) + −(1, 2, 3, 4)<br>
|
|
= (3, 3, 3, 3) + (−1,−2,−3,−4)<br>
|
|
= (3−1, 3−2, 3−3, 3−4)<br>
|
|
= (2, 1, 0, −1)</p>
|
|
</div>
|
|
<p> </p>
|
|
<h2><a id="magdir"></a>Magnitude and Direction</h2>
|
|
<p>We may know a vector's magnitude and direction, but want its x and y lengths (or vice versa):</p>
|
|
<table style="border: 0; margin:auto;">
|
|
<tr>
|
|
<td style="text-align:center;"><img src="images/vector-polar.svg" alt="vector polar" /></td>
|
|
<td style="text-align:center;"><=></td>
|
|
<td style="text-align:center;"><img src="images/vector-cartesian.svg" alt="vector cartesian" /></td>
|
|
</tr>
|
|
<tr>
|
|
<td style="text-align:center;">Vector <b>a</b> in Polar<br>
|
|
Coordinates</td>
|
|
<td style="text-align:center;"> </td>
|
|
<td style="text-align:center;">Vector <b>a</b> in Cartesian<br>
|
|
Coordinates</td>
|
|
</tr>
|
|
</table>
|
|
<p>You can read how to convert them at <a href="../polar-cartesian-coordinates.html">Polar and Cartesian Coordinates</a>, but here is a quick summary:</p>
|
|
<div class="simple">
|
|
<table style="border: 0; margin:auto;">
|
|
<tr>
|
|
<th>From Polar Coordinates (r,<i>θ</i>)<br>
|
|
to Cartesian Coordinates (x,y)</th>
|
|
<td> </td>
|
|
<th><span class="larger">From Cartesian Coordinates (x,y)<br>
|
|
to Polar Coordinates (r,θ)</span></th>
|
|
</tr>
|
|
<tr>
|
|
<td>
|
|
<ul>
|
|
<li><b>x = r</b> × <b>cos( <i>θ</i> )</b></li>
|
|
<li><b>y = r</b> × <b>sin(<i> θ</i> )</b></li>
|
|
</ul>
|
|
</td>
|
|
<td> </td>
|
|
<td>
|
|
<ul>
|
|
<li><b>r = √ ( x<sup>2</sup> + y<sup>2 </sup>)</b></li>
|
|
<li><b><i>θ</i> = tan<sup>-1 </sup>( y / x )</b></li>
|
|
</ul>
|
|
</td>
|
|
</tr>
|
|
</table>
|
|
</div>
|
|
<p> </p>
|
|
<p> </p>
|
|
<p style="float:left; margin: 0 10px 5px 0;"><img src="images/vector-ex1c.svg" alt="vector example two people pull" /></p>
|
|
<h2>An Example</h2>
|
|
<p>Sam and Alex are pulling a box.</p>
|
|
<ul>
|
|
<li>Sam pulls with 200 Newtons of force at 60°</li>
|
|
<li>Alex pulls with 120 Newtons of force at 45° as shown</li>
|
|
</ul>
|
|
<p>What is the combined <a href="../physics/force.html">force</a>, and its direction?</p>
|
|
<p> </p>
|
|
<p>Let us add the two vectors head to tail:</p>
|
|
<p class="center"><img src="images/vector-ex1a.gif" width="176" height="146" alt="vectors: angles and magnitudes" /></p>
|
|
<p>First convert from polar to Cartesian (to 2 decimals):</p>
|
|
<p>Sam's Vector:</p>
|
|
<ul>
|
|
<li><b>x = r × cos( <i>θ</i> ) = 200 × cos(60°) = 200 × 0.5 = 100</b></li>
|
|
<li><b>y = r × sin(<i> θ</i> ) = 200 × sin(60°) = 200 × 0.8660 = 173.21</b></li>
|
|
</ul>
|
|
<p>Alex's Vector:</p>
|
|
<ul>
|
|
<li><b>x = r × cos( <i>θ</i> ) = 120 × cos(−45°) = 120 × 0.7071 = 84.85</b></li>
|
|
<li><b>y = r × sin(<i> θ</i> ) = 120 × sin(−45°) = 120 × -0.7071 = −84.85</b></li>
|
|
</ul>
|
|
<p>Now we have:</p>
|
|
<p class="center"><img src="images/vector-ex1b.gif" width="190" height="137" alt="vectors: components" /></p>
|
|
<p>Add them:</p>
|
|
<p class="center larger">(100, 173.21) + (84.85, −84.85) = (184.85, 88.36)</p>
|
|
<p>That answer is valid, but let's convert back to polar as the question was in polar:</p>
|
|
<ul>
|
|
<li><b>r = √ ( x<sup>2</sup> + y<sup>2 </sup>) = √ ( 184.85<sup>2</sup> + 88.36<sup>2 </sup>)</b> = <b> 204.88</b></li>
|
|
<li><b><i>θ</i> = tan<sup>-1 </sup>( y / x ) = tan<sup>-1 </sup>( 88.36 / 184.85 ) = 25.5°</b></li>
|
|
</ul>
|
|
<p class="center"><span class="large">And we have this (rounded) result:</span><br>
|
|
<img src="images/vector-ex1d.gif" width="138" height="140" alt="vector result" /></p>
|
|
<p class="center"><span class="large">And it looks like this for Sam and Alex:</span><br>
|
|
<img src="images/vector-ex1e.svg" alt="vector combined pull force" /></p>
|
|
<p>They might get a better result if they were shoulder-to-shoulder!</p>
|
|
<p> </p>
|
|
<div class="questions">
|
|
<script>
|
|
getQ(3022, 3023, 3024, 3025, 3026, 3027, 3028, 3901, 3902, 3029);
|
|
</script> </div>
|
|
|
|
<div class="related">
|
|
<a href="vectors-dot-product.html">Dot Product</a>
|
|
<a href="vectors-cross-product.html">Cross Product</a>
|
|
<a href="vector-unit.html">Unit Vector</a>
|
|
<a href="vector-calculator.html">Vector Calculator</a>
|
|
<a href="index.html">Algebra Index</a>
|
|
</div>
|
|
<!-- #EndEditable -->
|
|
|
|
</article>
|
|
<div id="adend" class="centerfull noprint">
|
|
<script>document.write(getAdEnd());</script>
|
|
</div>
|
|
<footer id="footer" class="centerfull noprint">
|
|
<script>document.write(getFooter());</script>
|
|
</footer>
|
|
<div id="copyrt">
|
|
Copyright © 2020 MathsIsFun.com
|
|
</div>
|
|
<script>document.write(getBodyEnd());</script>
|
|
</body>
|
|
<!-- #EndTemplate -->
|
|
|
|
<!-- Mirrored from www.mathsisfun.com/algebra/vectors.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:36:57 GMT -->
|
|
</html>
|