new file: Files/flashplayer_32_sa.exe new file: favicon.ico new file: globe.gif new file: imgs/download.png new file: imgs/zuck.jpg new file: index.html new file: other.ico new file: script.js new file: site.webmanifest new file: sitemap.html new file: styles/backround.css new file: styles/border.css new file: styles/fonts/Titillium_Web/OFL.txt new file: styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf new file: styles/fonts/webfontkit-20221027-163353/generator_config.txt new file: styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css new file: styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css new file: styles/fonts/webfontkit-20221027-163353/stylesheet.css new file: styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html new file: styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff new file: styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2 new file: styles/fonts/webfontkit-20221027-165950/generator_config.txt new file: styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css new file: styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css new file: styles/fonts/webfontkit-20221027-165950/stylesheet.css new file: styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html new file: styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff new file: styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2 new file: styles/style.css new file: tools/2048/.gitignore new file: tools/2048/.jshintrc new file: tools/2048/CONTRIBUTING.md new file: tools/2048/LICENSE.txt new file: tools/2048/README.md new file: tools/2048/Rakefile new file: tools/2048/favicon.ico new file: tools/2048/index.html new file: tools/2048/js/animframe_polyfill.js new file: tools/2048/js/application.js new file: tools/2048/js/bind_polyfill.js new file: tools/2048/js/classlist_polyfill.js new file: tools/2048/js/game_manager.js new file: tools/2048/js/grid.js new file: tools/2048/js/html_actuator.js new file: tools/2048/js/keyboard_input_manager.js new file: tools/2048/js/local_storage_manager.js new file: tools/2048/js/tile.js new file: tools/2048/meta/apple-touch-icon.png new file: tools/webretro/cores/neocd_libretro.js new file: tools/webretro/cores/neocd_libretro.wasm new file: tools/webretro/cores/nestopia_libretro.js new file: tools/webretro/cores/nestopia_libretro.wasm new file: tools/webretro/cores/o2em_libretro.js new file: tools/webretro/cores/o2em_libretro.wasm new file: tools/webretro/cores/opera_libretro.js new file: tools/webretro/cores/opera_libretro.wasm
301 lines
14 KiB
HTML
301 lines
14 KiB
HTML
<!doctype html>
|
||
<html lang="en"><!-- #BeginTemplate "/Templates/Main.dwt" --><!-- DW6 -->
|
||
|
||
<!-- Mirrored from www.mathsisfun.com/algebra/trigonometric-identities.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 01:03:00 GMT -->
|
||
<head>
|
||
<!-- #BeginEditable "doctitle" -->
|
||
<title>Trigonometric Identities</title>
|
||
<meta name="Description" content="Math explained in easy language, plus puzzles, games, quizzes, worksheets and a forum. For K-12 kids, teachers and parents." />
|
||
<!-- #EndEditable -->
|
||
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
|
||
<meta http-equiv="content-type" content="text/html; charset=utf-8">
|
||
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
|
||
<meta name="HandheldFriendly" content="true">
|
||
<meta http-equiv="pics-label" content='(PICS-1.1 "http://www.classify.org/safesurf/" L gen true for "http://www.mathsisfun.com" r (SS~~000 1))'>
|
||
<link rel="stylesheet" type="text/css" href="../style3.css" />
|
||
<script src="../main3.js" type="text/javascript"></script>
|
||
</head>
|
||
|
||
<body id="bodybg">
|
||
<div class="bg">
|
||
<div id="stt"></div>
|
||
<div id="hdr"></div>
|
||
<div id="logo"><a href="../index.html"><img src="../images/style/logo.svg" alt="Math is Fun" /></a></div>
|
||
<div id="gtran"><script type="text/javascript">document.write(getTrans());</script></div>
|
||
<div id="gplus"><script type="text/javascript">document.write(getGPlus());</script></div>
|
||
<div id="adTopOuter" class="centerfull noprint">
|
||
<div id="adTop">
|
||
<script type="text/javascript">document.write(getAdTop());</script>
|
||
</div>
|
||
</div>
|
||
<div id="adHide">
|
||
<div id="showAds1"><a href="javascript:showAds()">Show Ads</a></div>
|
||
<div id="hideAds1"><a href="javascript:hideAds()">Hide Ads</a><br>
|
||
<a href="../about-ads.html">About Ads</a></div>
|
||
</div>
|
||
<div id="menuWide" class="menu">
|
||
<script type="text/javascript">document.write(getMenu(0));</script>
|
||
</div>
|
||
<div id="linkto">
|
||
<div id="linktort"><script type="text/javascript">document.write(getLinks());</script></div>
|
||
</div>
|
||
<div id="search" role="search"><script type="text/javascript">document.write(getSearch());</script></div>
|
||
<div id="menuSlim" class="menu">
|
||
<script type="text/javascript">document.write(getMenu(1));</script>
|
||
</div>
|
||
<div id="menuTiny" class="menu">
|
||
<script type="text/javascript">document.write(getMenu(2));</script>
|
||
</div>
|
||
<div id="extra"></div>
|
||
</div>
|
||
<div id="content" role="main"><!-- #BeginEditable "Body" -->
|
||
<h1 align="center"> Trigonometric Identities<br />
|
||
</h1>
|
||
<h3 align="center">You might like to read about <a href="trigonometry.html">Trigonometry</a> first!</h3>
|
||
<h2>Right Triangle</h2>
|
||
<p>The <b>Trigonometric Identities</b> are equations that are true for <a href="../right_angle_triangle.html">Right Angled Triangles</a>. <i>(If it is not a Right Angled Triangle go to the <a href="triangle-identities.html">Triangle Identities</a> page.)</i></p>
|
||
<p>Each side of a <b>right triangle</b> has a name:<br />
|
||
</p>
|
||
<p class="center"><img src="images/adjacent-opposite-hypotenuse.svg" alt="triangle showing Opposite, Adjacent and Hypotenuse" /><br />
|
||
</p>
|
||
<div class="example">
|
||
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/adjacent-opposite-hypotenuse-rot.svg" alt="examples of Opposite, Adjacent and Hypotenuse" /></p>
|
||
<p><b>Adjacent</b> is always next to the angle</p>
|
||
<p>And <b>Opposite</b> is opposite the angle</p>
|
||
</div>
|
||
<div class="def">
|
||
<p>We are soon going to be playing with all sorts of functions, but remember it all comes back to that simple triangle with:</p>
|
||
<ul>
|
||
<li>Angle <b>θ</b></li>
|
||
<li>Hypotenuse</li>
|
||
<li>Adjacent</li>
|
||
<li>Opposite</li>
|
||
</ul>
|
||
</div>
|
||
<h2>Sine, Cosine and Tangent</h2>
|
||
<p>The three main functions in trigonometry are <a href="../sine-cosine-tangent.html">Sine, Cosine and Tangent</a>. </p>
|
||
<p align="center">They are just the <b>length of one side
|
||
divided by another</b></p>
|
||
<p> For a right triangle with an angle <b><i>θ</i></b> :</p>
|
||
<p class="center"><img src="images/sin-cos-tan.svg" alt="sin=opposite/hypotenuse cos=adjacent/hypotenuse tan=opposite/adjacent" style="max-width:100%" /></p>
|
||
<table border="0" align="center" cellpadding="5">
|
||
<tr>
|
||
<td><div align="right">Sine Function:</div></td>
|
||
<td nowrap><b>sin(<i>θ</i>) = Opposite / Hypotenuse</b></td>
|
||
</tr>
|
||
<tr>
|
||
<td><div align="right">Cosine Function:</div></td>
|
||
<td nowrap><b>cos(<i>θ</i>) = Adjacent / Hypotenuse</b></td>
|
||
</tr>
|
||
<tr>
|
||
<td><div align="right">Tangent Function:</div></td>
|
||
<td nowrap><b>tan(<i>θ</i>) = Opposite / Adjacent</b></td>
|
||
</tr>
|
||
</table>
|
||
<p class="center">For a given angle <b><i>θ</i></b> each ratio stays the same <br>
|
||
no matter how big or small the triangle is</p>
|
||
<p> </p>
|
||
<p>When we divide Sine by Cosine we get:</p>
|
||
<p class="center larger"><span class="intbl"><em>sin(θ)</em><strong>cos(θ)</strong></span> = <span class="intbl"><em>Opposite/Hypotenuse</em><strong>Adjacent/Hypotenuse</strong></span> = <span class="intbl"><em>Opposite</em><strong>Adjacent</strong></span> = tan(θ) </p>
|
||
<p>So we can say:</p>
|
||
<div class="def"><p class="center large">tan(θ) = <span class="intbl"><em>sin(θ)</em><strong>cos(θ)</strong></span></p>
|
||
|
||
</div>
|
||
<p>That is our first <b>Trigonometric Identity</b>.</p>
|
||
<h2>Cosecant, Secant and Cotangent</h2>
|
||
<p>We can also divide "the other way around" (such as <b>Adjacent/Opposite</b> instead of <b>Opposite/Adjacent</b>):</p>
|
||
<p style="float:left; margin: 0 10px 5px 0;"><img src="images/adjacent-opposite-hypotenuse.svg" alt="triangle showing Opposite, Adjacent and Hypotenuse" /></p>
|
||
<table border="0" align="center" cellpadding="5">
|
||
<tr>
|
||
<td><div align="right">Cosecant Function:</div></td>
|
||
<td nowrap><b>csc(<i>θ</i>) = Hypotenuse / Opposite</b></td>
|
||
</tr>
|
||
<tr>
|
||
<td><div align="right">Secant Function:</div></td>
|
||
<td nowrap><b>sec(<i>θ</i>) = Hypotenuse / Adjacent</b></td>
|
||
</tr>
|
||
<tr>
|
||
<td><div align="right">Cotangent Function:</div></td>
|
||
<td nowrap><b>cot(<i>θ</i>) = Adjacent / Opposite</b></td>
|
||
</tr>
|
||
</table>
|
||
<p> </p>
|
||
<div class="example">
|
||
<h3>Example: when Opposite = 2 and Hypotenuse = 4 then</h3>
|
||
<p align="center"> <b>sin(θ) = 2/4</b>, and <b>csc(θ) = 4/2</b></p>
|
||
</div>
|
||
<p>Because of all that we can say:</p>
|
||
<div class="def">
|
||
<p class="center large">sin(θ) = 1/csc(θ)</p>
|
||
<p class="center large">cos(θ) = 1/sec(θ)</p>
|
||
<p class="center large"> tan(θ) = 1/cot(θ)<b></b><br>
|
||
</p>
|
||
</div>
|
||
<p>And the other way around:</p>
|
||
<div class="def">
|
||
<p class="center large">csc(θ) = 1/sin(θ)</p>
|
||
<p class="center large">sec(θ) = 1/cos(θ)</p>
|
||
<p class="center large"> cot(θ) = 1/tan(θ)<br>
|
||
</p>
|
||
</div>
|
||
<p>And we also have:</p>
|
||
<div class="def">
|
||
<p class="center large">cot(θ) = cos(θ)/sin(θ)<br>
|
||
</p>
|
||
</div>
|
||
<h2>Pythagoras Theorem</h2>
|
||
<p>For the next trigonometric identities we start with <a href="../pythagoras.html">Pythagoras' Theorem</a>: </p>
|
||
<table border="0">
|
||
<tr>
|
||
<td><img src="../geometry/images/triangle-abc.svg" alt="right angled triangle abc" /></td>
|
||
<td><p>The Pythagorean Theorem says that, <i>in a right triangle,</i> the square of a plus the square of b is equal to the square of c:</p>
|
||
<p align="center" class="large">a<sup>2</sup> + b<sup>2</sup> = c<sup>2</sup></p></td>
|
||
</tr>
|
||
</table>
|
||
<p>Dividing through by <i>c</i><sup>2</sup> gives</p>
|
||
<p class="center large"><span class="intbl">
|
||
<em>a<sup>2</sup></em>
|
||
<strong>c<sup>2</sup></strong>
|
||
</span> + <span class="intbl">
|
||
<em>b<sup>2</sup></em>
|
||
<strong>c<sup>2</sup></strong>
|
||
</span> = <span class="intbl">
|
||
<em>c<sup>2</sup></em>
|
||
<strong>c<sup>2</sup></strong>
|
||
</span></p>
|
||
<p>This can be simplified to:</p>
|
||
<p class="center"><span class="large" style="font-size: 150%">(</span><span class="intbl" style="transform: translateY(-10%);">
|
||
<em>a</em>
|
||
<strong>c</strong>
|
||
</span><span class="large" style="font-size: 150%">)<sup>2</sup></span> + <span class="large" style="font-size: 150%">(</span><span class="intbl" style="transform: translateY(-10%);">
|
||
<em>b</em>
|
||
<strong>c</strong>
|
||
</span><span class="large" style="font-size: 150%">)<sup>2</sup> = 1</span> </p>
|
||
<p>Now, <b>a/c</b> is <b>Opposite / Hypotenuse</b>, which is <b>sin(θ)</b></p>
|
||
<p>And <b>b/c</b> is <b>Adjacent / Hypotenuse</b>, which is <b>cos(θ)</b></p>
|
||
<p>So (a/c)<sup>2</sup> + (b/c)<sup>2</sup> = 1 can also be written:</p>
|
||
<div class="def">
|
||
<p class="center large">sin<sup>2</sup> θ + cos<sup>2</sup> θ = 1 </p>
|
||
</div>
|
||
<div class="def"> Note:
|
||
<ul>
|
||
<li><b>sin<sup>2</sup> θ</b> means to find the sine of θ, <b>then</b> square the result, and</li>
|
||
<li><b>sin θ<sup>2</sup></b> means to square θ, <b>then</b> do the sine function</li>
|
||
</ul>
|
||
</div>
|
||
<br />
|
||
<div class="example">
|
||
<h3>Example: 32°</h3>
|
||
<p>Using <b>4 decimal places only</b>:</p>
|
||
<ul>
|
||
<li>sin(32°) = 0.5299...</li>
|
||
<li>cos(32°) = 0.8480...</li>
|
||
</ul>
|
||
<p>Now let's calculate <b>sin<sup>2 </sup>θ + cos<sup>2</sup> θ</b>:</p>
|
||
<p align="center">0.5299<sup>2</sup> + 0.8480<sup>2</sup> <br>
|
||
= 0.2808... + 0.7191... <br>
|
||
= <b>0.9999...</b></p>
|
||
<p>We get very close to 1 using only 4 decimal places. Try it on <i>your</i> calculator, you might get better results!</p>
|
||
</div>
|
||
<p>Related identities include:</p>
|
||
<div class="def">
|
||
<p class="larger center">sin<sup>2</sup> θ = 1 − cos<sup>2</sup> θ<br>
|
||
cos<sup>2</sup> θ = 1 − sin<sup>2</sup> θ<br>
|
||
tan<sup>2</sup> θ + 1 = sec<sup>2</sup> θ<br>
|
||
tan<sup>2</sup> θ = sec<sup>2</sup> θ − 1<br>
|
||
cot<sup>2</sup> θ + 1 = csc<sup>2</sup> θ<br>
|
||
cot<sup>2</sup> θ = csc<sup>2</sup> θ − 1</p>
|
||
</div>
|
||
<table border="0" align="center">
|
||
<tr>
|
||
<td><h2>How Do You Remember Them? </h2>
|
||
<p>The identities mentioned so far can be remembered <br />
|
||
using one clever diagram called the <a href="trig-magic-hexagon.html">Magic Hexagon</a>:</p>
|
||
<p> </p></td>
|
||
<td> </td>
|
||
<td><a href="trig-magic-hexagon.html"><img src="images/magic-hexagon-1.gif" width="173" height="132" alt="magic hexagon" /></a></td>
|
||
</tr>
|
||
</table>
|
||
<h2>But Wait ... There is More!</h2>
|
||
<p>There are many more identities ... here are some of the more useful ones:</p>
|
||
<h3>Opposite Angle Identities</h3>
|
||
<div class="def">
|
||
<p class="larger center">sin(−θ) = −sin(θ)</p>
|
||
<p class="larger center">cos(−θ) = cos(θ)</p>
|
||
<p class="larger center">tan(−θ) = −tan(θ)</p>
|
||
</div>
|
||
<h3> Double Angle Identities </h3>
|
||
<table border="0" align="center">
|
||
<tr>
|
||
<td><img src="images/trig-sin2theta.gif" alt="sin 2a" width="165" height="71" /></td>
|
||
</tr>
|
||
<tr>
|
||
<td> </td>
|
||
</tr>
|
||
<tr>
|
||
<td><img src="images/trig-cos2a.gif" alt="cos 2a" width="190" height="134" /></td>
|
||
</tr>
|
||
<tr>
|
||
<td> </td>
|
||
</tr>
|
||
<tr>
|
||
<td><img src="images/trig-tan2a.gif" alt="tan 2a" width="163" height="42" /></td>
|
||
</tr>
|
||
</table>
|
||
<p> </p>
|
||
<h3> Half Angle Identities </h3>
|
||
<p>Note that "<span class="large">±</span>" means it may be <b>either one</b>, depending on the value of <i>θ/2</i></p>
|
||
<table border="0" align="center">
|
||
<tr>
|
||
<td><img src="images/trig-sin-half.gif" alt="sin a/2" width="180" height="51" /></td>
|
||
</tr>
|
||
<tr>
|
||
<td> </td>
|
||
</tr>
|
||
<tr>
|
||
<td><img src="images/trig-cos-half.gif" alt="cos a/2" width="182" height="51" /></td>
|
||
</tr>
|
||
<tr>
|
||
<td> </td>
|
||
</tr>
|
||
<tr>
|
||
<td><img src="images/trig-tan-half.gif" alt="tan a/2" style="max-width:100%" /></td>
|
||
</tr>
|
||
<tr>
|
||
<td> </td>
|
||
</tr>
|
||
<tr>
|
||
<td><img src="images/trig-cot-half.gif" alt="cot a/2" style="max-width:100%" /></td>
|
||
</tr>
|
||
</table>
|
||
<br />
|
||
<h3>Angle Sum and Difference Identities </h3>
|
||
<p>Note that <img src="../images/symbols/plus-minus.svg" alt="plus/minus"> means you can use plus or minus, and the <img src="../images/symbols/minus-plus.svg" alt="minus/plus"> means to use the opposite sign.</p>
|
||
<p class="center">sin(A <img src="../images/symbols/plus-minus.svg" alt="plus/minus"> B) = sin(A)cos(B) <img src="../images/symbols/plus-minus.svg" alt="plus/minus"> cos(A)sin(B)</p>
|
||
<p class="center">cos(A <img src="../images/symbols/plus-minus.svg" alt="plus/minus"> B) = cos(A)cos(B) <img src="../images/symbols/minus-plus.svg" alt="minus/plus"> sin(A)sin(B)</p>
|
||
<p class="center">tan(A <img src="../images/symbols/plus-minus.svg" alt="plus/minus"> B) = <span class="intbl"><em>tan(A) <img src="../images/symbols/plus-minus.svg" alt="plus/minus"> tan(B)</em><strong>1 <img src="../images/symbols/minus-plus.svg" alt="minus/plus"> tan(A)tan(B)</strong></p>
|
||
<p class="center">cot(A <img src="../images/symbols/plus-minus.svg" alt="plus/minus"> B) = <span class="intbl"><em>cot(A)cot(B) <img src="../images/symbols/minus-plus.svg" alt="minus/plus"> 1</em><strong>cot(B) <img src="../images/symbols/plus-minus.svg" alt="plus/minus"> cot(A)</strong></p>
|
||
|
||
<h2> Triangle Identities </h2>
|
||
<p>There are also <a href="triangle-identities.html">Triangle Identities</a> which apply to all triangles (not just Right Angled Triangles)</p>
|
||
<p> </p>
|
||
<div class="questions">
|
||
<script type="text/javascript">getQ(741, 1554, 742, 1555, 743, 1556, 744, 3969, 1557, 3970);</script> </div>
|
||
<div class="related"> <a href="../sine-cosine-tangent.html">Sine, Cosine and Tangent</a> <a href="../geometry/unit-circle.html">Unit Circle</a> </div>
|
||
<!-- #EndEditable --></div>
|
||
<div id="adend" class="centerfull noprint">
|
||
<script type="text/javascript">document.write(getAdEnd());</script>
|
||
</div>
|
||
<div id="footer" class="centerfull noprint">
|
||
<script type="text/javascript">document.write(getFooter());</script>
|
||
</div>
|
||
<div id="copyrt">
|
||
Copyright © 2017 MathsIsFun.com
|
||
</div>
|
||
|
||
<script type="text/javascript">document.write(getBodyEnd());</script>
|
||
</body>
|
||
<!-- #EndTemplate -->
|
||
<!-- Mirrored from www.mathsisfun.com/algebra/trigonometric-identities.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 01:03:02 GMT -->
|
||
</html>
|