lkarch.org/tools/mathisfun/www.mathsisfun.com/algebra/trig-finding-angle-right-triangle.html
Lucas Kent e39465ad2f Changes to be committed:
new file:   Files/flashplayer_32_sa.exe
	new file:   favicon.ico
	new file:   globe.gif
	new file:   imgs/download.png
	new file:   imgs/zuck.jpg
	new file:   index.html
	new file:   other.ico
	new file:   script.js
	new file:   site.webmanifest
	new file:   sitemap.html
	new file:   styles/backround.css
	new file:   styles/border.css
	new file:   styles/fonts/Titillium_Web/OFL.txt
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf
	new file:   styles/fonts/webfontkit-20221027-163353/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2
	new file:   styles/fonts/webfontkit-20221027-165950/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2
	new file:   styles/style.css
	new file:   tools/2048/.gitignore
	new file:   tools/2048/.jshintrc
	new file:   tools/2048/CONTRIBUTING.md
	new file:   tools/2048/LICENSE.txt
	new file:   tools/2048/README.md
	new file:   tools/2048/Rakefile
	new file:   tools/2048/favicon.ico
	new file:   tools/2048/index.html
	new file:   tools/2048/js/animframe_polyfill.js
	new file:   tools/2048/js/application.js
	new file:   tools/2048/js/bind_polyfill.js
	new file:   tools/2048/js/classlist_polyfill.js
	new file:   tools/2048/js/game_manager.js
	new file:   tools/2048/js/grid.js
	new file:   tools/2048/js/html_actuator.js
	new file:   tools/2048/js/keyboard_input_manager.js
	new file:   tools/2048/js/local_storage_manager.js
	new file:   tools/2048/js/tile.js
    new file:   tools/2048/meta/apple-touch-icon.png
	new file:   tools/webretro/cores/neocd_libretro.js
	new file:   tools/webretro/cores/neocd_libretro.wasm
	new file:   tools/webretro/cores/nestopia_libretro.js
	new file:   tools/webretro/cores/nestopia_libretro.wasm
	new file:   tools/webretro/cores/o2em_libretro.js
	new file:   tools/webretro/cores/o2em_libretro.wasm
	new file:   tools/webretro/cores/opera_libretro.js
	new file:   tools/webretro/cores/opera_libretro.wasm
2022-11-02 08:40:01 -04:00

232 lines
10 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!doctype html>
<html lang="en">
<!-- #BeginTemplate "/Templates/Advanced.dwt" --><!-- DW6 -->
<!-- Mirrored from www.mathsisfun.com/algebra/trig-finding-angle-right-triangle.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 01:02:46 GMT -->
<head>
<meta charset="UTF-8">
<!-- #BeginEditable "doctitle" -->
<title>Finding an Angle in a Right Angled Triangle</title>
<meta name="Description" content="Math explained in easy language, plus puzzles, games, quizzes, worksheets and a forum. For K-12 kids, teachers and parents." />
<script language="JavaScript" type="text/javascript">Author='Gates, Les and Pierce, Rod';</script>
<!-- #EndEditable -->
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
<meta name="HandheldFriendly" content="true">
<meta name="referrer" content="always">
<link rel="preload" href="../images/style/font-champ-bold.ttf" as="font" type="font/ttf" crossorigin>
<link rel="preload" href="../style4.css" as="style">
<link rel="preload" href="../main4.js" as="script">
<link rel="stylesheet" href="../style4.css">
<script src="../main4.js" defer></script>
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async src="https://www.googletagmanager.com/gtag/js?id=UA-29771508-1"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'UA-29771508-1');
</script>
</head>
<body id="bodybg" class="adv">
<div id="stt"></div>
<div id="adTop"></div>
<header>
<div id="hdr"></div>
<div id="tran"></div>
<div id="adHide"></div>
<div id="cookOK"></div>
</header>
<div class="mid">
<nav>
<div id="menuWide" class="menu"></div>
<div id="logo"><a href="../index.html"><img src="../images/style/logo-adv.svg" alt="Math is Fun Advanced"></a></div>
<div id="search" role="search"></div>
<div id="linkto"></div>
<div id="menuSlim" class="menu"></div>
<div id="menuTiny" class="menu"></div>
</nav>
<div id="extra"></div>
<article id="content" role="main">
<!-- #BeginEditable "Body" -->
<h1 class="center">Finding an Angle in a Right Angled Triangle</h1>
<h2>Angle from Any Two Sides</h2>
<p>We can find an <b>unknown angle</b> in a <a href="../right_angle_triangle.html">right-angled triangle</a>, as long as we know the lengths of <b>two of its sides</b>.</p>
<div class="example">
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/trig-ladder.gif" alt="ladder against wall" height="179" width="224" ></p>
<h3>Example</h3>
<p>The ladder leans against a wall as shown.</p>
<p>What is the <b>angle</b> between the ladder and the wall?</p><p>&nbsp;</p>
</div>
<div style="clear:both"></div>
<p class="center large">The answer is to use <a href="../sine-cosine-tangent.html">Sine, Cosine or Tangent</a>!</p>
<p>But which one to use? We have a special phrase &quot;<a href="sohcahtoa.html">SOHCAHTOA</a>&quot; to help us, and we use it like this:</p>
<div class="dotpoint">
<p><b>Step 1</b>: find the <b>names</b> of the two sides we know</p>
</div>
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/adjacent-opposite-hypotenuse.svg" alt="triangle showing Opposite, Adjacent and Hypotenuse" height="190" width="326" ></p>
<ul>
<li><b>Adjacent</b> is adjacent to the angle,</li>
<li><b>Opposite</b> is opposite the angle,</li>
<li>and the longest side is the <b>Hypotenuse</b>.</li>
</ul>
<div style="clear:both"></div>
<div class="example">
<h3>Example: in our ladder example we know the length of:</h3>
<ul>
<li>the side <b>Opposite</b> the angle &quot;x&quot;, which is <b>2.5</b></li>
<li>the longest side, called the <b>Hypotenuse</b>, which is <b>5</b></li>
</ul>
</div>
<div class="dotpoint">
<p><b>Step 2</b>: now use the first letters of those two sides (<b>O</b>pposite and <b>H</b>ypotenuse) and the phrase &quot;<a href="sohcahtoa.html">SOHCAHTOA</a>&quot; to find which one of Sine, Cosine <b>or</b> Tangent to use:</p>
</div>
<table style="border: 0; margin:auto;">
<tr>
<td style="width:80px;"><div align="left"><b><i>SOH...</i></b></div></td>
<td style="width:350px;"><div class="center"><b>S</b>ine: sin(&theta;) = <b>O</b>pposite / <b>H</b>ypotenuse</div></td>
</tr>
<tr>
<td style="width:80px;"><div class="center"><b><i>...CAH...</i></b></div></td>
<td style="width:350px;"><div class="center"><b>C</b>osine: cos(&theta;) = <b>A</b>djacent / <b>H</b>ypotenuse</div></td>
</tr>
<tr>
<td style="width:80px;"><div align="right"><b><i>...TOA</i></b></div></td>
<td style="width:350px;"><div class="center"><b>T</b>angent: tan(&theta;) = <b>O</b>pposite / <b>A</b>djacent</div></td>
</tr>
</table>
<div class="example">
<p>In our example that is<b> O</b>pposite and<b> H</b>ypotenuse, and that gives us “<b>SOH</b>cahtoa”, which tells us we need to use <b>Sine</b>.</p>
</div>
<div class="dotpoint">
<p><b>Step 3</b>: Put our values into the Sine equation:</p>
<p class="center larger"><b>S</b>in (x) = <b>O</b>pposite / <b>H</b>ypotenuse = 2.5 / 5 = <b>0.5</b></p>
</div>
<div class="dotpoint">
<p><b>Step 4</b>: Now solve that equation!</p>
<p class="center larger">sin(x) = 0.5</p>
<p>Next (trust me for the moment) we can re-arrange that into this:</p>
<p class="center larger">x = sin<sup>-1</sup>(0.5)</p>
<p>And then get our calculator, key in 0.5 and use the sin<sup>-1</sup> button to get the answer:</p>
<p class="center larger">x = <b>30&deg;</b></p>
</div>
And we have our answer!
<div class="def">
<h3>But what is the meaning of <b>sin<sup>-1</sup></b> … ?</h3>
<p class="center">Well, the Sine function <i><b>&quot;sin&quot;</b></i> takes an angle and gives us the <b>ratio</b> &quot;opposite/hypotenuse&quot;,</p>
<div class="center">
<p><img src="images/sin-sin-1.svg" alt="sin vs sin-1" height="131" width="338" ></p>
<p>But <i><b>sin<sup>-1</sup></b></i> (called &quot;inverse sine&quot;) goes the other way ...<br>
... it
takes the <b>ratio</b> &quot;opposite/hypotenuse&quot; and gives us an angle.</p>
</div>
</div>
<div class="example">
<h3>Example:</h3>
<ul>
<li>Sine Function: sin(<b>30&deg;</b>) = <b>0.5</b></li>
<li>Inverse Sine Function: sin<sup>-1</sup>(<b>0.5</b>) = <b>30&deg;</b></li>
</ul>
</div>
<p>&nbsp;</p>
<table style="border: 0; margin:auto;">
<tr>
<td><img src="images/calculator-sin-cos-tan.jpg" alt="calculator-sin-cos-tan" height="75" width="118" ></td>
<td>On the calculator press one of the following (depending<br>
on your brand of calculator):
either '2ndF sin' or 'shift sin'.</td>
</tr>
</table>
<p class="center">On your calculator, try using <b>sin</b> and <b>sin<sup>-1</sup></b> to see what results you get!</p>
<p class="center">Also try <b>cos</b> and <b>cos<sup>-1</sup></b>. And <b>tan</b> and <b>tan<sup>-1</sup></b>.<br>
Go on, have a try now.</p>
<h2>Step By Step</h2>
<p>These are the four steps we need to follow:</p><ul>
<li><b>Step 1</b> Find which two sides we know out of Opposite, Adjacent and Hypotenuse.</li><li><b>Step 2</b> Use SOHCAHTOA to decide which one of Sine, Cosine <b>or</b> Tangent to use in this question.</li>
<li><b>Step 3</b> For Sine calculate Opposite/Hypotenuse, for Cosine calculate Adjacent/Hypotenuse <b>or</b> for Tangent calculate Opposite/Adjacent.</li><li><b>Step 4</b> Find the angle from your calculator, using one of sin<sup>-1</sup>, cos<sup>-1</sup> <b>or</b> tan<sup>-1</sup></li></ul>
<h2>Examples</h2>
<p>Lets look at a couple more examples:</p>
<div class="example">
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/trig-example1.gif" alt="trig example airplane 400, 300" height="160" width="220" ></p>
<h3>Example</h3>
<p>Find the angle of elevation
of the plane from point A on the ground.</p>
<div style="clear:both"></div><br>
<ul>
<li><b>Step 1</b> The two sides we know are <b>O</b>pposite (300) and <b>A</b>djacent (400).</li><li><b>Step 2</b> SOHCAH<b>TOA</b> tells us we must use <b>T</b>angent.</li>
<li><b>Step 3</b> Calculate <b>Opposite/Adjacent</b> = 300/400 = <b>0.75</b></li>
<li><b>Step 4</b> Find the angle from your calculator using <b>tan<sup>-1</sup></b></li>
</ul>
<p class="indent50px">Tan x&deg; = opposite/adjacent = 300/400 = 0.75</p>
<p class="indent50px"><b>tan<sup>-1</sup></b> of 0.75 = <b>36.9&deg;</b> (correct to 1 decimal place)</p>
</div>
<p>Unless youre told otherwise, angles are usually rounded to one place of decimals.</p>
<div class="example">
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/trig-example2.gif" alt="trig example" height="124" width="194" ></p>
<h3>Example</h3>
<p>Find the size of angle a&deg;</p>
<div style="clear:both"></div><br>
<ul>
<li><b>Step 1</b> The two sides we know are <b>A</b>djacent (6,750) and <b>H</b>ypotenuse (8,100).</li><li><b>Step 2</b> SOH<b>CAH</b>TOA tells us we must use <b>C</b>osine.</li>
<li><b>Step 3</b> Calculate Adjacent / Hypotenuse = 6,750/8,100 = 0.8333</li>
<li><b>Step 4</b> Find the angle from your calculator using <b>cos<sup>-1</sup></b> of 0.8333:</li>
</ul><div class="indent50px">
<p>cos a&deg; = 6,750/8,100 = 0.8333</p>
</div>
<div class="indent50px"> <b>cos<sup>-1</sup></b> of 0.8333 = <b>33.6&deg;</b> (to 1 decimal place)</div>
</div>
<p>&nbsp;</p>
<div class="questions">250, 1500, 1501, 1502, 251, 1503, 2349, 2350, 2351, 3934</div>
<div class="related">
<a href="../games/random-trigonometry.html">Random Trigonometry</a>
<a href="trig-sine-law.html">The Law of Sines</a>
<a href="trig-cosine-law.html">The Law of Cosines</a>
<a href="trig-solving-triangles.html">Solving Triangles</a>
<a href="trigonometry-index.html">Trigonometry Index</a>
<a href="index.html">Algebra Index</a>
</div>
<!-- #EndEditable -->
</article>
<div id="adend" class="centerfull noprint"></div>
<footer id="footer" class="centerfull noprint"></footer>
<div id="copyrt">Copyright &copy; 2021 MathsIsFun.com</div>
</div>
</body>
<!-- #EndTemplate -->
<!-- Mirrored from www.mathsisfun.com/algebra/trig-finding-angle-right-triangle.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 01:02:46 GMT -->
</html>