new file: Files/flashplayer_32_sa.exe new file: favicon.ico new file: globe.gif new file: imgs/download.png new file: imgs/zuck.jpg new file: index.html new file: other.ico new file: script.js new file: site.webmanifest new file: sitemap.html new file: styles/backround.css new file: styles/border.css new file: styles/fonts/Titillium_Web/OFL.txt new file: styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf new file: styles/fonts/webfontkit-20221027-163353/generator_config.txt new file: styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css new file: styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css new file: styles/fonts/webfontkit-20221027-163353/stylesheet.css new file: styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html new file: styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff new file: styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2 new file: styles/fonts/webfontkit-20221027-165950/generator_config.txt new file: styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css new file: styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css new file: styles/fonts/webfontkit-20221027-165950/stylesheet.css new file: styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html new file: styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff new file: styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2 new file: styles/style.css new file: tools/2048/.gitignore new file: tools/2048/.jshintrc new file: tools/2048/CONTRIBUTING.md new file: tools/2048/LICENSE.txt new file: tools/2048/README.md new file: tools/2048/Rakefile new file: tools/2048/favicon.ico new file: tools/2048/index.html new file: tools/2048/js/animframe_polyfill.js new file: tools/2048/js/application.js new file: tools/2048/js/bind_polyfill.js new file: tools/2048/js/classlist_polyfill.js new file: tools/2048/js/game_manager.js new file: tools/2048/js/grid.js new file: tools/2048/js/html_actuator.js new file: tools/2048/js/keyboard_input_manager.js new file: tools/2048/js/local_storage_manager.js new file: tools/2048/js/tile.js new file: tools/2048/meta/apple-touch-icon.png new file: tools/webretro/cores/neocd_libretro.js new file: tools/webretro/cores/neocd_libretro.wasm new file: tools/webretro/cores/nestopia_libretro.js new file: tools/webretro/cores/nestopia_libretro.wasm new file: tools/webretro/cores/o2em_libretro.js new file: tools/webretro/cores/o2em_libretro.wasm new file: tools/webretro/cores/opera_libretro.js new file: tools/webretro/cores/opera_libretro.wasm
232 lines
10 KiB
HTML
232 lines
10 KiB
HTML
<!doctype html>
|
||
<html lang="en">
|
||
<!-- #BeginTemplate "/Templates/Advanced.dwt" --><!-- DW6 -->
|
||
<!-- Mirrored from www.mathsisfun.com/algebra/trig-finding-angle-right-triangle.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 01:02:46 GMT -->
|
||
<head>
|
||
<meta charset="UTF-8">
|
||
<!-- #BeginEditable "doctitle" -->
|
||
<title>Finding an Angle in a Right Angled Triangle</title>
|
||
<meta name="Description" content="Math explained in easy language, plus puzzles, games, quizzes, worksheets and a forum. For K-12 kids, teachers and parents." />
|
||
<script language="JavaScript" type="text/javascript">Author='Gates, Les and Pierce, Rod';</script>
|
||
<!-- #EndEditable -->
|
||
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
|
||
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
|
||
<meta name="HandheldFriendly" content="true">
|
||
<meta name="referrer" content="always">
|
||
<link rel="preload" href="../images/style/font-champ-bold.ttf" as="font" type="font/ttf" crossorigin>
|
||
<link rel="preload" href="../style4.css" as="style">
|
||
<link rel="preload" href="../main4.js" as="script">
|
||
<link rel="stylesheet" href="../style4.css">
|
||
<script src="../main4.js" defer></script>
|
||
<!-- Global site tag (gtag.js) - Google Analytics -->
|
||
<script async src="https://www.googletagmanager.com/gtag/js?id=UA-29771508-1"></script>
|
||
<script>
|
||
window.dataLayer = window.dataLayer || [];
|
||
function gtag(){dataLayer.push(arguments);}
|
||
gtag('js', new Date());
|
||
gtag('config', 'UA-29771508-1');
|
||
</script>
|
||
</head>
|
||
|
||
<body id="bodybg" class="adv">
|
||
|
||
<div id="stt"></div>
|
||
<div id="adTop"></div>
|
||
<header>
|
||
<div id="hdr"></div>
|
||
<div id="tran"></div>
|
||
<div id="adHide"></div>
|
||
<div id="cookOK"></div>
|
||
</header>
|
||
|
||
<div class="mid">
|
||
|
||
<nav>
|
||
<div id="menuWide" class="menu"></div>
|
||
<div id="logo"><a href="../index.html"><img src="../images/style/logo-adv.svg" alt="Math is Fun Advanced"></a></div>
|
||
|
||
<div id="search" role="search"></div>
|
||
<div id="linkto"></div>
|
||
|
||
<div id="menuSlim" class="menu"></div>
|
||
<div id="menuTiny" class="menu"></div>
|
||
</nav>
|
||
|
||
<div id="extra"></div>
|
||
|
||
<article id="content" role="main">
|
||
|
||
<!-- #BeginEditable "Body" -->
|
||
|
||
|
||
<h1 class="center">Finding an Angle in a Right Angled Triangle</h1>
|
||
|
||
|
||
<h2>Angle from Any Two Sides</h2>
|
||
|
||
<p>We can find an <b>unknown angle</b> in a <a href="../right_angle_triangle.html">right-angled triangle</a>, as long as we know the lengths of <b>two of its sides</b>.</p>
|
||
<div class="example">
|
||
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/trig-ladder.gif" alt="ladder against wall" height="179" width="224" ></p>
|
||
|
||
<h3>Example</h3>
|
||
<p>The ladder leans against a wall as shown.</p>
|
||
<p>What is the <b>angle</b> between the ladder and the wall?</p><p> </p>
|
||
</div>
|
||
<div style="clear:both"></div>
|
||
<p class="center large">The answer is to use <a href="../sine-cosine-tangent.html">Sine, Cosine or Tangent</a>!</p>
|
||
<p>But which one to use? We have a special phrase "<a href="sohcahtoa.html">SOHCAHTOA</a>" to help us, and we use it like this:</p>
|
||
<div class="dotpoint">
|
||
<p><b>Step 1</b>: find the <b>names</b> of the two sides we know</p>
|
||
</div>
|
||
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/adjacent-opposite-hypotenuse.svg" alt="triangle showing Opposite, Adjacent and Hypotenuse" height="190" width="326" ></p>
|
||
<ul>
|
||
<li><b>Adjacent</b> is adjacent to the angle,</li>
|
||
<li><b>Opposite</b> is opposite the angle,</li>
|
||
<li>and the longest side is the <b>Hypotenuse</b>.</li>
|
||
</ul>
|
||
<div style="clear:both"></div>
|
||
<div class="example">
|
||
|
||
<h3>Example: in our ladder example we know the length of:</h3>
|
||
<ul>
|
||
<li>the side <b>Opposite</b> the angle "x", which is <b>2.5</b></li>
|
||
<li>the longest side, called the <b>Hypotenuse</b>, which is <b>5</b></li>
|
||
</ul>
|
||
</div>
|
||
<div class="dotpoint">
|
||
<p><b>Step 2</b>: now use the first letters of those two sides (<b>O</b>pposite and <b>H</b>ypotenuse) and the phrase "<a href="sohcahtoa.html">SOHCAHTOA</a>" to find which one of Sine, Cosine <b>or</b> Tangent to use:</p>
|
||
</div>
|
||
<table style="border: 0; margin:auto;">
|
||
<tr>
|
||
<td style="width:80px;"><div align="left"><b><i>SOH...</i></b></div></td>
|
||
<td style="width:350px;"><div class="center"><b>S</b>ine: sin(θ) = <b>O</b>pposite / <b>H</b>ypotenuse</div></td>
|
||
</tr>
|
||
<tr>
|
||
<td style="width:80px;"><div class="center"><b><i>...CAH...</i></b></div></td>
|
||
<td style="width:350px;"><div class="center"><b>C</b>osine: cos(θ) = <b>A</b>djacent / <b>H</b>ypotenuse</div></td>
|
||
</tr>
|
||
<tr>
|
||
<td style="width:80px;"><div align="right"><b><i>...TOA</i></b></div></td>
|
||
<td style="width:350px;"><div class="center"><b>T</b>angent: tan(θ) = <b>O</b>pposite / <b>A</b>djacent</div></td>
|
||
</tr>
|
||
</table>
|
||
<div class="example">
|
||
<p>In our example that is<b> O</b>pposite and<b> H</b>ypotenuse, and that gives us “<b>SOH</b>cahtoa”, which tells us we need to use <b>Sine</b>.</p>
|
||
</div>
|
||
<div class="dotpoint">
|
||
<p><b>Step 3</b>: Put our values into the Sine equation:</p>
|
||
<p class="center larger"><b>S</b>in (x) = <b>O</b>pposite / <b>H</b>ypotenuse = 2.5 / 5 = <b>0.5</b></p>
|
||
</div>
|
||
<div class="dotpoint">
|
||
<p><b>Step 4</b>: Now solve that equation!</p>
|
||
<p class="center larger">sin(x) = 0.5</p>
|
||
<p>Next (trust me for the moment) we can re-arrange that into this:</p>
|
||
<p class="center larger">x = sin<sup>-1</sup>(0.5)</p>
|
||
<p>And then get our calculator, key in 0.5 and use the sin<sup>-1</sup> button to get the answer:</p>
|
||
<p class="center larger">x = <b>30°</b></p>
|
||
</div>
|
||
And we have our answer!
|
||
<div class="def">
|
||
|
||
<h3>But what is the meaning of <b>sin<sup>-1</sup></b> … ?</h3>
|
||
<p class="center">Well, the Sine function <i><b>"sin"</b></i> takes an angle and gives us the <b>ratio</b> "opposite/hypotenuse",</p>
|
||
<div class="center">
|
||
<p><img src="images/sin-sin-1.svg" alt="sin vs sin-1" height="131" width="338" ></p>
|
||
<p>But <i><b>sin<sup>-1</sup></b></i> (called "inverse sine") goes the other way ...<br>
|
||
... it
|
||
takes the <b>ratio</b> "opposite/hypotenuse" and gives us an angle.</p>
|
||
|
||
</div>
|
||
</div>
|
||
<div class="example">
|
||
|
||
<h3>Example:</h3>
|
||
<ul>
|
||
<li>Sine Function: sin(<b>30°</b>) = <b>0.5</b></li>
|
||
<li>Inverse Sine Function: sin<sup>-1</sup>(<b>0.5</b>) = <b>30°</b></li>
|
||
</ul>
|
||
</div>
|
||
<p> </p>
|
||
<table style="border: 0; margin:auto;">
|
||
<tr>
|
||
<td><img src="images/calculator-sin-cos-tan.jpg" alt="calculator-sin-cos-tan" height="75" width="118" ></td>
|
||
<td>On the calculator press one of the following (depending<br>
|
||
on your brand of calculator):
|
||
either '2ndF sin' or 'shift sin'.</td>
|
||
</tr>
|
||
</table>
|
||
<p class="center">On your calculator, try using <b>sin</b> and <b>sin<sup>-1</sup></b> to see what results you get!</p>
|
||
<p class="center">Also try <b>cos</b> and <b>cos<sup>-1</sup></b>. And <b>tan</b> and <b>tan<sup>-1</sup></b>.<br>
|
||
Go on, have a try now.</p>
|
||
|
||
|
||
|
||
<h2>Step By Step</h2>
|
||
|
||
<p>These are the four steps we need to follow:</p><ul>
|
||
<li><b>Step 1</b> Find which two sides we know – out of Opposite, Adjacent and Hypotenuse.</li><li><b>Step 2</b> Use SOHCAHTOA to decide which one of Sine, Cosine <b>or</b> Tangent to use in this question.</li>
|
||
<li><b>Step 3</b> For Sine calculate Opposite/Hypotenuse, for Cosine calculate Adjacent/Hypotenuse <b>or</b> for Tangent calculate Opposite/Adjacent.</li><li><b>Step 4</b> Find the angle from your calculator, using one of sin<sup>-1</sup>, cos<sup>-1</sup> <b>or</b> tan<sup>-1</sup></li></ul>
|
||
|
||
|
||
<h2>Examples</h2>
|
||
|
||
<p>Let’s look at a couple more examples:</p>
|
||
<div class="example">
|
||
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/trig-example1.gif" alt="trig example airplane 400, 300" height="160" width="220" ></p>
|
||
|
||
<h3>Example</h3>
|
||
<p>Find the angle of elevation
|
||
of the plane from point A on the ground.</p>
|
||
|
||
<div style="clear:both"></div><br>
|
||
<ul>
|
||
<li><b>Step 1</b> The two sides we know are <b>O</b>pposite (300) and <b>A</b>djacent (400).</li><li><b>Step 2</b> SOHCAH<b>TOA</b> tells us we must use <b>T</b>angent.</li>
|
||
<li><b>Step 3</b> Calculate <b>Opposite/Adjacent</b> = 300/400 = <b>0.75</b></li>
|
||
|
||
<li><b>Step 4</b> Find the angle from your calculator using <b>tan<sup>-1</sup></b></li>
|
||
</ul>
|
||
<p class="indent50px">Tan x° = opposite/adjacent = 300/400 = 0.75</p>
|
||
<p class="indent50px"><b>tan<sup>-1</sup></b> of 0.75 = <b>36.9°</b> (correct to 1 decimal place)</p>
|
||
</div>
|
||
<p>Unless you’re told otherwise, angles are usually rounded to one place of decimals.</p>
|
||
<div class="example">
|
||
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/trig-example2.gif" alt="trig example" height="124" width="194" ></p>
|
||
|
||
<h3>Example</h3>
|
||
<p>Find the size of angle a°</p>
|
||
<div style="clear:both"></div><br>
|
||
<ul>
|
||
<li><b>Step 1</b> The two sides we know are <b>A</b>djacent (6,750) and <b>H</b>ypotenuse (8,100).</li><li><b>Step 2</b> SOH<b>CAH</b>TOA tells us we must use <b>C</b>osine.</li>
|
||
<li><b>Step 3</b> Calculate Adjacent / Hypotenuse = 6,750/8,100 = 0.8333</li>
|
||
<li><b>Step 4</b> Find the angle from your calculator using <b>cos<sup>-1</sup></b> of 0.8333:</li>
|
||
</ul><div class="indent50px">
|
||
<p>cos a° = 6,750/8,100 = 0.8333</p>
|
||
</div>
|
||
<div class="indent50px"> <b>cos<sup>-1</sup></b> of 0.8333 = <b>33.6°</b> (to 1 decimal place)</div>
|
||
</div>
|
||
<p> </p>
|
||
<div class="questions">250, 1500, 1501, 1502, 251, 1503, 2349, 2350, 2351, 3934</div>
|
||
|
||
<div class="related">
|
||
<a href="../games/random-trigonometry.html">Random Trigonometry</a>
|
||
<a href="trig-sine-law.html">The Law of Sines</a>
|
||
<a href="trig-cosine-law.html">The Law of Cosines</a>
|
||
<a href="trig-solving-triangles.html">Solving Triangles</a>
|
||
<a href="trigonometry-index.html">Trigonometry Index</a>
|
||
<a href="index.html">Algebra Index</a>
|
||
</div>
|
||
<!-- #EndEditable -->
|
||
|
||
</article>
|
||
|
||
<div id="adend" class="centerfull noprint"></div>
|
||
<footer id="footer" class="centerfull noprint"></footer>
|
||
<div id="copyrt">Copyright © 2021 MathsIsFun.com</div>
|
||
|
||
</div>
|
||
</body>
|
||
<!-- #EndTemplate -->
|
||
|
||
<!-- Mirrored from www.mathsisfun.com/algebra/trig-finding-angle-right-triangle.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 01:02:46 GMT -->
|
||
</html>
|