lkarch.org/tools/mathisfun/www.mathsisfun.com/algebra/small-angle-approximations.html
Lucas Kent e39465ad2f Changes to be committed:
new file:   Files/flashplayer_32_sa.exe
	new file:   favicon.ico
	new file:   globe.gif
	new file:   imgs/download.png
	new file:   imgs/zuck.jpg
	new file:   index.html
	new file:   other.ico
	new file:   script.js
	new file:   site.webmanifest
	new file:   sitemap.html
	new file:   styles/backround.css
	new file:   styles/border.css
	new file:   styles/fonts/Titillium_Web/OFL.txt
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf
	new file:   styles/fonts/webfontkit-20221027-163353/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2
	new file:   styles/fonts/webfontkit-20221027-165950/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2
	new file:   styles/style.css
	new file:   tools/2048/.gitignore
	new file:   tools/2048/.jshintrc
	new file:   tools/2048/CONTRIBUTING.md
	new file:   tools/2048/LICENSE.txt
	new file:   tools/2048/README.md
	new file:   tools/2048/Rakefile
	new file:   tools/2048/favicon.ico
	new file:   tools/2048/index.html
	new file:   tools/2048/js/animframe_polyfill.js
	new file:   tools/2048/js/application.js
	new file:   tools/2048/js/bind_polyfill.js
	new file:   tools/2048/js/classlist_polyfill.js
	new file:   tools/2048/js/game_manager.js
	new file:   tools/2048/js/grid.js
	new file:   tools/2048/js/html_actuator.js
	new file:   tools/2048/js/keyboard_input_manager.js
	new file:   tools/2048/js/local_storage_manager.js
	new file:   tools/2048/js/tile.js
    new file:   tools/2048/meta/apple-touch-icon.png
	new file:   tools/webretro/cores/neocd_libretro.js
	new file:   tools/webretro/cores/neocd_libretro.wasm
	new file:   tools/webretro/cores/nestopia_libretro.js
	new file:   tools/webretro/cores/nestopia_libretro.wasm
	new file:   tools/webretro/cores/o2em_libretro.js
	new file:   tools/webretro/cores/o2em_libretro.wasm
	new file:   tools/webretro/cores/opera_libretro.js
	new file:   tools/webretro/cores/opera_libretro.wasm
2022-11-02 08:40:01 -04:00

298 lines
8.0 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html lang="en"><!-- #BeginTemplate "/Templates/Main.dwt" --><!-- DW6 -->
<!-- Mirrored from www.mathsisfun.com/algebra/small-angle-approximations.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:38:54 GMT -->
<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
<!-- #BeginEditable "doctitle" -->
<title>Small Angle Approximations</title>
<meta name="description" content="Small Angle Approximation.">
<!-- #EndEditable -->
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
<meta name="HandheldFriendly" content="true">
<meta name="referrer" content="always">
<link rel="preload" href="../images/style/font-champ-bold.ttf" as="font" type="font/ttf" crossorigin="">
<link rel="preload" href="../style4.css" as="style">
<link rel="preload" href="../main4.js" as="script">
<link rel="stylesheet" href="../style4.css">
<script src="../main4.js" defer="defer"></script>
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async="" src="https://www.googletagmanager.com/gtag/js?id=UA-29771508-1"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'UA-29771508-1');
</script>
</head>
<body id="bodybg">
<div id="stt"></div>
<div id="adTop"></div>
<header>
<div id="hdr"></div>
<div id="tran"></div>
<div id="adHide"></div>
<div id="cookOK"></div>
</header>
<div class="mid">
<nav>
<div id="menuWide" class="menu"></div>
<div id="logo"><a href="../index.html"><img src="../images/style/logo.svg" alt="Math is Fun"></a></div>
<div id="search" role="search"></div>
<div id="linkto"></div>
<div id="menuSlim" class="menu"></div>
<div id="menuTiny" class="menu"></div>
</nav>
<div id="extra"></div>
<article id="content" role="main">
<!-- #BeginEditable "Body" -->
<h1>Small Angle Approximations</h1>
<p>When the angle θ (in <a href="../geometry/radians.html">radians</a>) is small we can use these <b>approximations </b>for <a href="../sine-cosine-tangent.html">Sine, Cosine and Tangent</a>:</p>
<div class="center large">sin θ ≈ θ</div>
<div class="center large">cos θ ≈ 1 <span class="intbl"><em>θ<sup>2</sup></em><strong>2</strong></span></div>
<div class="center large">tan θ ≈ θ</div>
<!-- cos THT APR 1 - THT^2/2 -->
<p>If we are very daring we can use <b>cos θ ≈ 1 </b></p>
<p> Let's see some values! (Note: values are approximate)</p>
<h3>sin θ ≈ θ</h3>
<div class="simple">
<table class="center">
<tbody>
<tr>
<th>θ (radians)</th>
<th>sin θ</th>
<th>θ <i></i> sin θ</th>
</tr><tr>
<td>0</td>
<td>0</td>
<td>0</td></tr>
<tr>
<td>0.01</td>
<td>0.0099998</td>
<td>0.0000002</td></tr>
<tr>
<td>0.1</td>
<td>0.0998</td>
<td>0.0002</td></tr>
<tr>
<td>0.2</td>
<td>0.1987</td>
<td>0.0013</td></tr>
<tr>
<td>0.5</td>
<td>0.4794</td>
<td>0.0206</td></tr>
<tr>
<td>1</td>
<td>0.8415</td>
<td>0.1585</td></tr>
</tbody></table>
</div>
<p>Perfect at zero, really good at 0.01, good at 0.1, and can be useful up to 0.5 if you aren't fussy.</p>
<p>
</p><h3>cos θ ≈ 1</h3>
<p>Can we simply use <b>1</b> to approximate cos θ?</p>
<div class="simple">
<table class="center">
<tbody>
<tr><th>θ (radians)</th>
<th>cos θ</th>
<th>1 <i></i> cos θ</th>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td></tr>
<tr>
<td>0.01</td>
<td>0.99995</td>
<td>0.00005</td></tr>
<tr>
<td>0.1</td>
<td>0.995</td>
<td>0.005</td></tr>
<tr>
<td>0.2</td>
<td>0.9801</td>
<td>0.0199</td></tr>
<tr>
<td>0.5</td>
<td>0.8776</td>
<td>0.1224</td></tr>
<tr>
<td>1</td>
<td>0.5403</td>
<td>0.4597</td></tr>
</tbody></table>
</div>
<p>Well yes we can, but only for very small angles.&nbsp;
</p>
<h3>cos θ ≈ 1 <span class="intbl"><em>θ<sup>2</sup></em><strong>2</strong></span></h3>
<p>So let us try the better version of 1 <span class="intbl"><em>θ<sup>2</sup></em><strong>2</strong></span>
:
</p>
<div class="simple">
<table class="center">
<tbody>
<tr><th>θ (radians)</th>
<th>cos θ</th>
<th>1 <span class="intbl"><em>θ<sup>2</sup></em><strong>2</strong></span></th> <th>(1<span class="intbl"><em>θ<sup>2</sup></em><strong>2</strong></span>) cos θ</th>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td></tr>
<tr>
<td>0.01</td>
<td>0.9999500004</td>
<td>0.99995</td>
<td>-0.0000000004</td></tr>
<tr>
<td>0.1</td>
<td>0.9950042</td>
<td>0.995</td>
<td>-0.0000042</td></tr>
<tr>
<td>0.2</td>
<td>0.980067</td>
<td>0.98</td>
<td>-0.000067</td></tr>
<tr>
<td>0.5</td>
<td>0.8776</td>
<td>0.875</td>
<td>-0.0026</td></tr>
<tr>
<td>1</td>
<td>0.5403</td>
<td>0.5</td>
<td>-0.0403</td></tr>
</tbody></table>
</div><p>Wow, that is a big improvement!</p>
<h3>tan θ ≈ θ</h3>
<div class="simple">
<table class="center">
<tbody>
<tr><th>θ (radians)</th>
<th>tan θ</th>
<th>tan θ θ</th>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td></tr>
<tr>
<td>0.01</td>
<td>0.0100003</td>
<td>-0.0000003</td></tr>
<tr>
<td>0.1</td>
<td>0.1003</td>
<td>-0.0003</td></tr>
<tr>
<td>0.2</td>
<td>0.2027</td>
<td>-0.0027</td></tr>
<tr>
<td>0.5</td>
<td>0.5463</td>
<td>-0.0463</td></tr>
<tr>
<td>1</td>
<td>1.5574</td>
<td>-0.5574</td></tr>
</tbody></table>
</div><p>Not too bad for small values, right?</p>
<h2>Taylor Series</h2>
<p>Did you see the magical improvement for cos when we went from <b>1</b> to <b>1 <span class="intbl"><em>θ<sup>2</sup></em><strong>2</strong></span></b> ?</p>
<p>The secret is the <a href="taylor-series.html">Taylor Series</a> expansion of cos:</p>
<p class="center"><b>cos x</b> = 1 <span class="intbl"><em>x<sup>2</sup></em><strong>2!</strong></span> + <span class="intbl"><em>x<sup>4</sup></em><strong>4!</strong></span> ...</p>
<p>So ... we can use more terms if want more accuracy!</p>
<p>Likewise we can improve sine:</p>
<p class="center"><b>sin x</b> = x <span class="intbl"><em>x<sup>3</sup></em><strong>3!</strong></span> + <span class="intbl"><em>x<sup>5</sup></em><strong>5!</strong></span> ...</p>
<p>Or <b>tan</b>, or other functions like <i><b>e</b></i><b><sup>x</sup></b></p>
<div class="example">
<h3>Example: you are stuck on an island without a calculator. Calculate sine of 20 degrees.</h3>
<p>Degrees? But we need to use radians!</p>
<p>Let us estimate as best we can:</p>
<p class="center">20 × <span class="intbl"><em><span class="times">π</span></em><strong>180</strong></span> = <span class="intbl"><em><span class="times">π</span></em><strong>9</strong></span> ≈ 3.1416 × 0.11... ≈ 0.35 radians </p>
<p>Now, using just one extra term:</p>
<p><b>sin x</b> = x <span class="intbl"><em>x<sup>3</sup></em><strong>3!</strong></span> ...</p>
<p><b>sin x</b> ≈ 0.35 <span class="intbl"><em>0.35<sup>3</sup></em><strong>3!</strong></span> ≈ 0.35 <span class="intbl"><em>0.35*0.35*0.35</em><strong>6</strong></span> <b>≈ 0.3428</b> (after much effort) </p>
<p>(Later when you get home you use a calculator to get <b>sin(20°) = 0.3420201...</b>, not bad!)</p>
</div>
<h2>Uses</h2>
<p>These approximations are very useful in <b>astronomy </b>where many angles are very small.</p>
<p>Also in some areas of engineering and optics too.</p>
<p><br></p>
<div class="related">
<a href="../sine-cosine-tangent.html">Sine, Cosine and Tangent</a>
<a href="taylor-series.html">Taylor Series</a>
<a href="index.html">Algebra Index</a>
</div>
<!-- #EndEditable -->
</article>
<div id="adend" class="centerfull noprint"></div>
<footer id="footer" class="centerfull noprint"></footer>
<div id="copyrt">Copyright © 2022 Rod Pierce</div>
</div>
</body><!-- #EndTemplate -->
<!-- Mirrored from www.mathsisfun.com/algebra/small-angle-approximations.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:38:54 GMT -->
</html>