Lucas Kent e39465ad2f Changes to be committed:
new file:   Files/flashplayer_32_sa.exe
	new file:   favicon.ico
	new file:   globe.gif
	new file:   imgs/download.png
	new file:   imgs/zuck.jpg
	new file:   index.html
	new file:   other.ico
	new file:   script.js
	new file:   site.webmanifest
	new file:   sitemap.html
	new file:   styles/backround.css
	new file:   styles/border.css
	new file:   styles/fonts/Titillium_Web/OFL.txt
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf
	new file:   styles/fonts/webfontkit-20221027-163353/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2
	new file:   styles/fonts/webfontkit-20221027-165950/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2
	new file:   styles/style.css
	new file:   tools/2048/.gitignore
	new file:   tools/2048/.jshintrc
	new file:   tools/2048/CONTRIBUTING.md
	new file:   tools/2048/LICENSE.txt
	new file:   tools/2048/README.md
	new file:   tools/2048/Rakefile
	new file:   tools/2048/favicon.ico
	new file:   tools/2048/index.html
	new file:   tools/2048/js/animframe_polyfill.js
	new file:   tools/2048/js/application.js
	new file:   tools/2048/js/bind_polyfill.js
	new file:   tools/2048/js/classlist_polyfill.js
	new file:   tools/2048/js/game_manager.js
	new file:   tools/2048/js/grid.js
	new file:   tools/2048/js/html_actuator.js
	new file:   tools/2048/js/keyboard_input_manager.js
	new file:   tools/2048/js/local_storage_manager.js
	new file:   tools/2048/js/tile.js
    new file:   tools/2048/meta/apple-touch-icon.png
	new file:   tools/webretro/cores/neocd_libretro.js
	new file:   tools/webretro/cores/neocd_libretro.wasm
	new file:   tools/webretro/cores/nestopia_libretro.js
	new file:   tools/webretro/cores/nestopia_libretro.wasm
	new file:   tools/webretro/cores/o2em_libretro.js
	new file:   tools/webretro/cores/o2em_libretro.wasm
	new file:   tools/webretro/cores/opera_libretro.js
	new file:   tools/webretro/cores/opera_libretro.wasm
2022-11-02 08:40:01 -04:00

266 lines
13 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html lang="en"><!-- #BeginTemplate "/Templates/Advanced.dwt" --><!-- DW6 -->
<!-- Mirrored from www.mathsisfun.com/algebra/polynomials-behave.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 01:03:03 GMT -->
<head>
<meta http-equiv="content-type" content="text/html; charset=utf-8">
<!-- #BeginEditable "doctitle" -->
<title>How Polynomials Behave</title><!-- #EndEditable -->
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
<meta name="viewport" content="width=device-width; initial-scale=1.0; user-scalable=true;">
<meta name="HandheldFriendly" content="true">
<meta http-equiv="pics-label" content="(PICS-1.1 &quot;http://www.classify.org/safesurf/&quot; L gen true for &quot;http://www.mathsisfun.com&quot; r (SS~~000 1))">
<link rel="stylesheet" type="text/css" href="../style3.css">
<script src="../main3.js" type="text/javascript"></script>
</head>
<body id="bodybg" class="adv">
<div class="bg">
<div id="stt"></div>
<div id="hdr"></div>
<div id="logo"><a href="../index.html"><img src="../images/style/logo.svg" alt="Math is Fun"></a></div>
<div id="advText">Advanced</div>
<div id="gtran">
<script type="text/javascript">document.write(getTrans());</script></div>
<div id="gplus">
<script type="text/javascript">document.write(getGPlus());</script></div>
<div id="adTopOuter" class="centerfull noprint">
<div id="adTop">
<script type="text/javascript">document.write(getAdTop());</script>
</div>
</div>
<div id="adHide">
<div id="showAds1"><a href="javascript:showAds()">Show Ads</a></div>
<div id="hideAds1"><a href="javascript:hideAds()">Hide Ads</a><br>
<a href="../about-ads.html">About Ads</a></div>
</div>
<div id="menuWide" class="menu">
<script type="text/javascript">document.write(getMenu(0));</script>
</div>
<div id="linkto">
<div id="linktort">
<script type="text/javascript">document.write(getLinks());</script></div>
</div>
<div id="search" role="search">
<script type="text/javascript">document.write(getSearch());</script></div>
<div id="menuSlim" class="menu">
<script type="text/javascript">document.write(getMenu(1));</script>
</div>
<div id="menuTiny" class="menu">
<script type="text/javascript">document.write(getMenu(2));</script>
</div>
<div id="extra"></div>
</div>
<div id="content" role="main"><!-- #BeginEditable "Body" -->
<h1 align="center">How Polynomials Behave</h1>
<span class="larger">A <a href="polynomials.html">polynomial</a> looks like this:</span>
<div class="beach">
<table align="center" cellpadding="5" border="0">
<tbody>
<tr align="center">
<td><img src="images/polynomial-1var-example.svg" alt="polynomial 2x^4+6x-5"></td>
</tr>
<tr align="center">
<td>example of a polynomial</td>
</tr>
</tbody></table>
</div>
<h2>Continuous and Smooth</h2>
<p>There are two main things about the graphs of Polynomials:</p>
<div class="dotpoint">
<p>The graphs of polynomials are <a href="../calculus/continuity.html">continuous</a>, which is a special term with an exact definition in calculus, but here we will use this simplified definition:</p>
</div>
<div class="center80">
<p> <img src="../images/pencil-paper.gif" alt="pencil" style="float:left; margin: 0 10px 5px 0; vertical-align:middle;" height="77" width="91"><span class="larger">we can draw it without lifting our pen from the paper</span></p>
<div style="clear:both"></div>
</div>
<div class="dotpoint">
<p>The graphs of polynomials are also <b>smooth</b>. No sharp "corners" or "cusps"</p>
<p><img src="images/polynomial-smooth.gif" alt="smooth, not sharp" height="113" width="231"></p>
</div>
<h2>How the Curves Behave</h2>
<p>Let us graph some polynomials to see what happens ...</p>
<p align="center">... and let us start with the simplest form:</p>
<p class="largest" align="center">f(x) = x<sup>n</sup></p>
<p>Which actually does interesting things.</p>
<p class="center"><img src="images/power-functions-even.gif" alt="Even Power Functions" height="166" width="225"></p>
<p><b>Even values</b> of "n" behave the same:
</p>
<ul>
<li>Always above (or equal to) 0</li>
<li>Always go through (0,0), (1,1) and (-1,1)</li>
<li>Larger values of n flatten out near 0, and rise more sharply above the x-axis</li></ul>
<p><br></p>
<p>And:</p>
<p class="center"><img src="images/power-functions-odd.gif" alt="Odd Power Functions" height="195" width="225"></p>
<p><b>Odd values</b> of "n" behave the same
</p>
<ul>
<li>Always go from negative <b>x</b> and <b>y</b> to positive <b>x</b> and <b>y</b></li>
<li>Always go through (0,0), (1,1) and (1,1)</li>
<li>Larger values of n flatten out near 0, and fall/rise more sharply from the x-axis</li></ul>
<h2>Power Function of Degree n</h2>
<p>Next, by including a multiplier of <span class="large">a</span> we get what is called a "Power Function":</p>
<p align="center"><span class="largest">f(x) = ax<sup>n</sup></span><sup><br>
</sup><span class="large">f(x) </span>equals<span class="large"> a</span> times <span class="large">x</span> to the "power" (ie exponent) <span class="large">n</span></p>
<p>The "a" changes it this way:</p>
<ul>
<li>Larger values of <b>a</b> squash the curve (inwards to y-axis)</li>
<li>Smaller values of <b>a</b> expand it (away from y-axis)</li>
<li>And negative values of <b>a</b> flip it upside down</li>
</ul>
<table align="center" border="0">
<tbody>
<tr align="center">
<td class="larger">Example: f(x) = ax<sup>2</sup><br>
a = 2, 1, ½, 1</td>
<td width="40">&nbsp;</td>
<td><span class="larger">Example: f(x) = ax<sup>3</sup><br>
a = 2, 1, ½, 1</span></td>
</tr>
<tr align="center">
<td>&nbsp;</td>
<td>&nbsp;</td>
<td>&nbsp;</td>
</tr>
<tr align="center">
<td><img src="images/graph-ax2.gif" alt="ax^2" height="217" width="184"><br></td>
<td>&nbsp;</td>
<td><img src="images/graph-ax3.gif" alt="ax^3" height="217" width="185"></td>
</tr>
</tbody></table>
<p>We can use that knowledge when sketching some polynomials:</p>
<div class="example">
<h3>Example: Make a Sketch of y=12x<sup>7</sup></h3>
<p> Start with the simplest "odd power" graph of <span class="large">x<sup>3</sup></span>, and gradually turn it into <span class="large">12x<sup>7</sup></span></p>
<ul>
<li>We know how x<sup>3</sup> looks,</li>
<li>x<sup>7</sup> is similar, but flatter near zero, and steeper elsewhere,</li>
<li>Squash it to get 2x<sup>7</sup>,</li>
<li>Flip it to get 2x<sup>7</sup>, and</li>
<li>Raise it by 1 to get 12x<sup>7</sup>.</li>
</ul>
<p>Like this:</p>
<p class="center"><img src="images/power-function-example1.gif" alt="x^3 to 1-2x^7 in steps" height="156" width="602"></p>
<p>So by doing this step-by-step we can get a good result.</p>
</div>
<h2>Turning Points</h2>
<p>A Turning Point is an x-value where a <a href="functions-maxima-minima.html">local maximum or local minimum</a> happens:</p>
<p align="center"><img src="images/function-max-min.svg" alt="Local Max and Min"></p>
<h3>How many turning points does a polynomial have?</h3>
<p class="large" align="center">Never more than the Degree minus 1</p>
<div class="words">
<p>The <a href="degree-expression.html">Degree</a> of a Polynomial with one variable is <b> the <a href="../exponent.html">largest exponent</a> of that variable.</b></p>
<p align="center"><img src="images/degree-example-a.svg" alt="polynomial"></p>
</div>
<p>&nbsp;</p>
<div class="example">
<h3>Example: a polynomial of Degree 4 will have 3 turning points or less</h3>
<table align="center" border="0">
<tbody>
<tr>
<td><img src="images/polynomial-turning-points1.gif" alt="x^4-2x^2+x" height="212" width="216"></td>
<td>&nbsp;</td>
<td><img src="images/polynomial-turning-points2.gif" alt="x^4-2x" height="215" width="215"></td>
</tr>
<tr align="center">
<td><span class="large">x<sup>4</sup>2x<sup>2</sup>+x<br>
</span> has <b>3</b> turning points</td>
<td>&nbsp;</td>
<td><span class="large">x<sup>4</sup>2x<br>
</span> has only <b>1</b> turning point</td>
</tr>
</tbody></table>
<br>
<p>The <b>most</b> is 3, but there can be less.</p>
</div>
<p>We may not know where they are, but at least we know the most there can be!</p>
<h2></h2>
<h2>What Happens at the Ends</h2>
<p>And when we move far from zero: </p>
<ul>
<li>far to the <b>right</b> (large values of x), or </li>
<li>far to the <b>left</b> (large negative values of x) </li>
</ul>
<p>then the graph starts to resemble the graph of <b>y = ax<sup>n</sup></b> where <b>ax<sup>n</sup></b> is the <b>term with the highest degree</b>.</p>
<div class="example">
<h3>Example: f(x) = 3x<sup>3</sup>4x<sup>2</sup>+x</h3>
<p>Far to the left or right, the graph will look like <span class="large">3x<sup>3</sup></span></p>
<table align="center" border="0">
<tbody>
<tr align="center">
<td><img src="images/polynomial-end-behavior1.gif" alt="polynomial end behavior" height="141" width="189"></td>
<td>&nbsp;</td>
<td><img src="images/polynomial-end-behavior2.gif" alt="polynomial end behavior" height="142" width="143"></td>
</tr>
<tr align="center">
<td>Near Zero, they are <br>
different</td>
<td>&nbsp;</td>
<td>Far From Zero, they <br>
become similar</td>
</tr>
</tbody></table>
<p>This makes sense, because when x is large, then x<sup>3</sup> is much greater than x<sup>2</sup> etc</p>
</div>
<div class="words">
<p>This is officially called the "<b>End Behavior Model</b>".</p>
</div>
<p>And yes, we have come to the end!</p>
<h2>Summary</h2>
<ul>
<div class="bigul">
<li>Graphs are <b>continuous</b> and <b>smooth</b></li>
<li><b>Even</b> exponents behave the same: above (or equal to) 0; go through (0,0), (1,1) and (1,1); larger values of n flatten out near 0, and rise more sharply.</li>
<li><b>Odd</b> exponents behave the same: go from negative <b>x</b> and <b>y</b> to positive <b>x</b> and <b>y</b>;
go through (0,0), (1,1) and (1,1); larger values of n flatten out near 0, and fall/rise more sharply</li>
<li>Factors:
<ul>
<li>Larger values squash the curve (inwards to y-axis)</li>
<li>Smaller values expand it (away from y-axis)</li>
<li>And negative values flip it upside down</li>
</ul>
</li>
<li>Turning points: there are "Degree 1" or less.</li>
<li>End Behavior: use the term with the largest exponent</li>
</div>
</ul>
<p>&nbsp;</p>
<div class="questions">
<script type="text/javascript">getQ(486, 487, 488, 4020, 1128, 4022, 1129, 2404, 2405, 4021);</script>&nbsp;
</div>
<div class="related">
<a href="introduction.html">Introduction to Algebra</a>
<a href="definitions.html">Algebra - Basic Definitions</a>
<a href="index.html">Algebra Index</a> </div>
<!-- #EndEditable --></div>
<div id="adend" class="centerfull noprint">
<script type="text/javascript">document.write(getAdEnd());</script>
</div>
<div id="footer" class="centerfull noprint">
<script type="text/javascript">document.write(getFooter());</script>
</div>
<div id="copyrt">
Copyright © 2017 MathsIsFun.com
</div>
<script type="text/javascript">document.write(getBodyEnd());</script>
</body><!-- #EndTemplate -->
<!-- Mirrored from www.mathsisfun.com/algebra/polynomials-behave.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 01:03:05 GMT -->
</html>