Lucas Kent e39465ad2f Changes to be committed:
new file:   Files/flashplayer_32_sa.exe
	new file:   favicon.ico
	new file:   globe.gif
	new file:   imgs/download.png
	new file:   imgs/zuck.jpg
	new file:   index.html
	new file:   other.ico
	new file:   script.js
	new file:   site.webmanifest
	new file:   sitemap.html
	new file:   styles/backround.css
	new file:   styles/border.css
	new file:   styles/fonts/Titillium_Web/OFL.txt
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf
	new file:   styles/fonts/webfontkit-20221027-163353/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2
	new file:   styles/fonts/webfontkit-20221027-165950/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2
	new file:   styles/style.css
	new file:   tools/2048/.gitignore
	new file:   tools/2048/.jshintrc
	new file:   tools/2048/CONTRIBUTING.md
	new file:   tools/2048/LICENSE.txt
	new file:   tools/2048/README.md
	new file:   tools/2048/Rakefile
	new file:   tools/2048/favicon.ico
	new file:   tools/2048/index.html
	new file:   tools/2048/js/animframe_polyfill.js
	new file:   tools/2048/js/application.js
	new file:   tools/2048/js/bind_polyfill.js
	new file:   tools/2048/js/classlist_polyfill.js
	new file:   tools/2048/js/game_manager.js
	new file:   tools/2048/js/grid.js
	new file:   tools/2048/js/html_actuator.js
	new file:   tools/2048/js/keyboard_input_manager.js
	new file:   tools/2048/js/local_storage_manager.js
	new file:   tools/2048/js/tile.js
    new file:   tools/2048/meta/apple-touch-icon.png
	new file:   tools/webretro/cores/neocd_libretro.js
	new file:   tools/webretro/cores/neocd_libretro.wasm
	new file:   tools/webretro/cores/nestopia_libretro.js
	new file:   tools/webretro/cores/nestopia_libretro.wasm
	new file:   tools/webretro/cores/o2em_libretro.js
	new file:   tools/webretro/cores/o2em_libretro.wasm
	new file:   tools/webretro/cores/opera_libretro.js
	new file:   tools/webretro/cores/opera_libretro.wasm
2022-11-02 08:40:01 -04:00

251 lines
12 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html lang="en"><!-- #BeginTemplate "/Templates/Advanced.dwt" --><!-- DW6 -->
<!-- Mirrored from www.mathsisfun.com/algebra/exponential-growth.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:59:27 GMT -->
<head>
<meta http-equiv="content-type" content="text/html; charset=utf-8">
<!-- #BeginEditable "doctitle" -->
<title>Exponential Growth and Decay</title>
<script>reSpell=[["meters","metres"]];</script>
<meta name="description" content="Example: if a population of rabbits doubles every month we would have 2, then 4, then 8, 16, 32, 64, 128, 256, etc!">
<!-- #EndEditable -->
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
<meta name="HandheldFriendly" content="true">
<meta name="referrer" content="always">
<link rel="stylesheet" type="text/css" href="../style3.css">
<script src="../main3.js"></script>
</head>
<body id="bodybg" class="adv">
<div class="bg">
<div id="stt"></div>
<div id="hdr"></div>
<div id="logo"><a href="../index.html"><img src="../images/style/logo.svg" alt="Math is Fun"></a></div>
<div id="advText">Advanced</div>
<div id="gtran">
<script>document.write(getTrans());</script>
</div>
<div id="adTopOuter" class="centerfull noprint">
<div id="adTop">
<script>document.write(getAdTop());</script>
</div>
</div>
<div id="adHide">
<div id="showAds1"><a href="javascript:showAds()">Show Ads</a></div>
<div id="hideAds1"><a href="javascript:hideAds()">Hide Ads</a><br>
<a href="../about-ads.html">About Ads</a></div>
</div>
<div id="menuWide" class="menu">
<script>document.write(getMenu(0));</script>
</div>
<div id="linkto">
<div id="linktort">
<script>document.write(getLinks());</script>
</div>
</div>
<div id="search" role="search">
<script>document.write(getSearch());</script>
</div>
<div id="menuSlim" class="menu">
<script>document.write(getMenu(1));</script>
</div>
<div id="menuTiny" class="menu">
<script>document.write(getMenu(2));</script>
</div>
<div id="extra"></div>
</div>
<div id="content" role="main">
<!-- #BeginEditable "Body" -->
<h1 class="center">Exponential Growth and Decay</h1>
<h3 align="center">Exponential growth can be amazing!</h3>
<p>The idea: something always grows
in relation to its <b>current </b>value, such as always doubling.</p>
<div class="example">
<h3>Example: If a population of rabbits doubles every month, we would have 2, then 4, then 8, 16, 32, 64, 128, 256, etc!</h3>
</div>
<h2>Amazing Tree</h2>
<p style="float:left; margin: 0 10px 5px 0;"><img src="images/tree.jpg" alt="tree" height="240" width="161"></p>
<p>&nbsp;</p>
<p>Let us say we have this special tree.</p>
<p>It grows <a href="../exponent.html">exponentially</a> , following this formula:</p>
<div class="center80">
<p class="center large">Height (in mm) = e<sup>x</sup></p>
</div>
<p class="center"><i><b>e</b> is <a href="../numbers/e-eulers-number.html">Euler's number</a>, about 2.718</i></p>
<div style="clear:both"></div>
<p>&nbsp;</p>
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/ex.gif" alt="e^x graph" height="394" width="140"></p>
<ul>
<li>At 1 year old it is: <span class="large">e<sup>1 </sup> = 2.7 mm</span> high ... really tiny!</li>
<li>At 5 years it is: <span class="large">e<sup>5 </sup> = 148 mm</span> high ... as high as a cup</li>
<li>At 10 years: <span class="large">e<sup>10 </sup> = 22 m</span> high ... as tall as a building</li>
<li>At 15 years: <span class="large">e<sup>15 </sup> = 3.3 km</span> high ... 10 times the height of the Eiffel Tower</li>
<li>At 20 years: <span class="large">e<sup>20 </sup> = 485 km</span> high ... up into space!</li>
</ul>
<p>&nbsp;</p>
<p class="center">No tree could ever grow that tall.<br>
So when people say "it grows exponentially" ... just think what that means.</p>
<div style="clear:both"></div>
<h2>Growth and Decay</h2>
<p>But sometimes things <b>can</b> grow (or the opposite: decay) exponentially, <b><i>at least for a while</i></b>.</p>
<p>So we have a generally useful formula:</p>
<div class="def">
<p class="center large">y(t) = a × e<sup>kt</sup></p>
<p class="center">Where <b>y(t)</b> = value at time "t"<br>
<b>a</b> = value at the start<br>
<b>k</b> = rate of growth (when &gt;0) or decay (when &lt;0)<br>
<b>t</b> = time</p>
</div>
<p>&nbsp;</p>
<div class="example">
<h3>Example: 2 months ago you had 3 mice, you now have 18.</h3>
<div class="example2">
<table style="border: 0;">
<tbody>
<tr>
<td><img src="images/mice.jpg" alt="Mice" height="135" width="166"></td>
<td>
<p>Assuming the growth continues like that</p>
<ul>
<li>What is the "k" value?</li>
<li>How many mice 2 Months from now?</li>
<li>How many mice 1 Year from now?</li>
</ul></td>
</tr>
</tbody></table>
</div>
<p>&nbsp;</p>
<p>Start with the formula:</p>
<p class="center larger">y(t) = a × e<sup>kt</sup></p>
<p>We know <b>a=3</b> mice, <b>t=2</b> months, and right now <b>y(2)=18</b> mice:</p>
<p class="center"><span class="larger">18 = 3 × e<sup>2k</sup></span></p>
<p>Now some algebra to solve for <b>k</b>:</p>
<div class="tbl">
<div class="row"><span class="left">Divide both sides by 3:</span><span class="right">6 = e<sup>2k</sup></span></div>
<div class="row"><span class="left">Take the natural logarithm of both sides:</span><span class="right">ln(6) = ln(e<sup>2k</sup>)</span></div>
<div class="row"><span class="left"><b>ln(e<sup>x</sup>)=x</b>, so:</span><span class="right">ln(6) = 2k</span></div>
<div class="row"><span class="left">Swap sides:</span><span class="right">2k = ln(6)</span></div>
<div class="row"><span class="left">Divide by 2:</span><span class="right"><b>k = ln(6)/2</b></span></div>
</div>
<p><i>Notes:</i></p>
<ul>
<li><i>The step where we used <b>ln(e<sup>x</sup>)=x</b> is explained at <a href="exponents-logarithms.html">Exponents and Logarithms</a></i>.</li>
<li><i>we could calculate <b>k ≈ 0.896</b>, but it is best to keep it as <b>k = ln(6)/2</b> until we do our final calculations.</i></li>
</ul>
<p>&nbsp;</p>
<p>We can now put <b>k = ln(6)/2</b> into our formula from before:</p>
<p class="center larger">y(t) = 3 e<sup>(ln(6)/2)t<b></b></sup></p>
<p>Now let's calculate the population in 2 more months (at <b>t=4</b> months):</p>
<p class="center larger">y(<b>4</b>) = 3 e<sup>(ln(6)/2)×<b>4</b></sup> = 108</p>
<p>And in 1 year from now (<b>t=14</b> months):</p>
<p class="center"><span class="larger">y(<b>14</b>) = 3 e<sup>(ln(6)/2)×<b>14</b></sup> = 839,808</span></p>
<p>That's a lot of mice! I hope you will be feeding them properly.</p>
</div>
<h2>Exponential Decay</h2>
<p>Some things "decay" (get smaller) exponentially.</p>
<div class="example">
<h3>Example: Atmospheric pressure (the pressure of air around you) decreases as you go higher.</h3>
<p>It decreases about 12% for every 1000 m: an <b>exponential decay</b>.</p>
<p>The pressure at sea level is about 1013 hPa (depending on weather).</p>
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/mount-everest.jpg" alt="mount everest" height="214" width="243"></p>
<p>&nbsp;</p>
<ul>
<li>Write the formula (with its "k" value),</li>
<li>Find the pressure on the roof of the Empire State Building (381 m),</li>
<li>and at the top of Mount Everest (8848 m)</li>
</ul>
<p>&nbsp;</p>
<p>Start with the formula:</p>
<p class="center larger">y(t) = a × e<sup>kt</sup></p>
<p>We know</p>
<ul>
<li><b>a</b> (the pressure at sea level) = <b>1013</b> hPa</li>
<li><b>t</b> is in meters (distance, not time, but the formula still works)</li>
<li><b>y(1000)</b> is a 12% reduction on 1013 hPa = <b>891.44</b> hPa</li>
</ul>
<p>So:</p>
<p class="center"><span class="larger">891.44 = 1013 e<sup>k×1000</sup></span></p>
<p>Now some algebra to solve for <b>k</b>:</p>
<div class="tbl">
<div class="row"><span class="left">Divide both sides by 1013:</span><span class="right">0.88 = e<sup>1000k</sup></span></div>
<div class="row"><span class="left">Take the natural logarithm of both sides:</span><span class="right">ln(0.88) = ln(e<sup>1000k</sup>)</span></div>
<div class="row"><span class="left"><b>ln(e<sup>x</sup>)=x</b>, so:</span><span class="right">ln(0.88) = 1000k</span></div>
<div class="row"><span class="left">Swap sides:</span><span class="right">1000k = ln(0.88)</span></div>
<div class="row"><span class="left">Divide by 1000:</span><span class="right"><b>k = ln(0.88)/1000</b></span></div>
</div>
<p>&nbsp;</p>
<p>Now we know "k" we can write<b></b>:</p>
<p class="center"><span class="larger">y(t) = 1013 e<sup>(ln(0.88)/1000)×t</sup></span></p>
<p>&nbsp;</p>
<p>And finally we can calculate the pressure at <b>381 m</b>, and at <b>8848 m</b>:</p>
<p>&nbsp;</p>
<p class="center larger">y(<b>381</b>) = 1013 e<sup>(ln(0.88)/1000)×<b>381</b></sup> = 965 hPa</p>
<p class="center"><span class="larger">y(<b>8848</b>) = 1013 e<sup>(ln(0.88)/1000)×<b>8848</b></sup> = 327 hPa</span></p>
<p>&nbsp;</p>
<p>(In fact pressures at Mount Everest are around 337 hPa ... good calculations!)</p>
</div>
<h2>Half Life</h2>
<p>The "half life" is how long it takes for a value to halve with exponential decay.</p>
<p>Commonly used with radioactive decay, but it has many other applications!</p>
<div class="example">
<h3>Example: The half-life of caffeine in your body is about 6 hours. If you had 1 cup of coffee 9 hours ago how much is left in your system?</h3>
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/coffee.jpg" alt="cup of coffee" height="197" width="239"></p>
<p>Start with the formula:</p>
<p class="center larger">y(t) = a × e<sup>kt</sup></p>
<p>We know:</p>
<ul>
<li><b>a</b> (the starting dose) = <b>1</b> cup of coffee!</li>
<li><b>t</b> is in hours</li>
<li>at <b>y(6)</b> we have a 50% reduction (because 6 is the half life)</li>
</ul>
<p>So:</p>
<p class="center"><span class="larger">0.5 = 1 cup × e<sup><b>6</b>k</sup></span></p>
<p>Now some algebra to solve for <b>k</b>:</p>
<div class="tbl">
<div class="row"><span class="left">Take the natural logarithm of both sides:</span><span class="right">ln(0.5) = ln(e<sup>6k</sup>)</span></div>
<div class="row"><span class="left"><b>ln(e<sup>x</sup>)=x</b>, so:</span><span class="right">ln(0.5) = 6k</span></div>
<div class="row"><span class="left">Swap sides:</span><span class="right">6k = ln(0.5)</span></div>
<div class="row"><span class="left">Divide by 6:</span><span class="right"><b>k = ln(0.5)/6</b></span></div>
</div>
<p>Now we can write<b></b>:</p>
<p class="center"><span class="larger">y(t) = 1 e<sup>(ln(0.5)/6)×t</sup></span></p>
<p>In <b>6 hours:</b></p>
<p class="center larger">y(<b>6</b>) = 1 e<sup>(ln(0.5)/6)×<b>6</b></sup> = 0.5</p>
<p>Which is correct as 6 hours is the half life</p>
<p>And in <b>9 hours:</b></p>
<p class="center larger">y(<b>9</b>) = 1 e<sup>(ln(0.5)/6)×<b>9</b></sup> = 0.35</p>
<p>After <b>9</b> hours the amount left in your system is <b>about 0.35</b> of the original amount. Have a nice sleep :)</p>
</div>
<p>Have a play with the <a href="../numbers/half-life-medicine-tool.html">Half Life of Medicine Tool</a> to get a good understanding of this.</p>
<p>&nbsp;</p>
<div class="questions">
<script>getQ(589, 1238, 1239, 2304, 2305, 8089, 8090, 8091, 8092);</script>&nbsp; </div>
<div class="related">
<a href="../exponent.html">Exponents</a>
<a href="index.html">Algebra Index</a>
</div>
<!-- #EndEditable -->
</div>
<div id="adend" class="centerfull noprint">
<script>document.write(getAdEnd());</script>
</div>
<div id="footer" class="centerfull noprint">
<script>document.write(getFooter());</script>
</div>
<div id="copyrt">
Copyright © 2020 MathsIsFun.com
</div>
<script>document.write(getBodyEnd());</script>
</body>
<!-- Mirrored from www.mathsisfun.com/algebra/exponential-growth.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:59:28 GMT -->
</html>