new file: Files/flashplayer_32_sa.exe new file: favicon.ico new file: globe.gif new file: imgs/download.png new file: imgs/zuck.jpg new file: index.html new file: other.ico new file: script.js new file: site.webmanifest new file: sitemap.html new file: styles/backround.css new file: styles/border.css new file: styles/fonts/Titillium_Web/OFL.txt new file: styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf new file: styles/fonts/webfontkit-20221027-163353/generator_config.txt new file: styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css new file: styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css new file: styles/fonts/webfontkit-20221027-163353/stylesheet.css new file: styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html new file: styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff new file: styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2 new file: styles/fonts/webfontkit-20221027-165950/generator_config.txt new file: styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css new file: styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css new file: styles/fonts/webfontkit-20221027-165950/stylesheet.css new file: styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html new file: styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff new file: styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2 new file: styles/style.css new file: tools/2048/.gitignore new file: tools/2048/.jshintrc new file: tools/2048/CONTRIBUTING.md new file: tools/2048/LICENSE.txt new file: tools/2048/README.md new file: tools/2048/Rakefile new file: tools/2048/favicon.ico new file: tools/2048/index.html new file: tools/2048/js/animframe_polyfill.js new file: tools/2048/js/application.js new file: tools/2048/js/bind_polyfill.js new file: tools/2048/js/classlist_polyfill.js new file: tools/2048/js/game_manager.js new file: tools/2048/js/grid.js new file: tools/2048/js/html_actuator.js new file: tools/2048/js/keyboard_input_manager.js new file: tools/2048/js/local_storage_manager.js new file: tools/2048/js/tile.js new file: tools/2048/meta/apple-touch-icon.png new file: tools/webretro/cores/neocd_libretro.js new file: tools/webretro/cores/neocd_libretro.wasm new file: tools/webretro/cores/nestopia_libretro.js new file: tools/webretro/cores/nestopia_libretro.wasm new file: tools/webretro/cores/o2em_libretro.js new file: tools/webretro/cores/o2em_libretro.wasm new file: tools/webretro/cores/opera_libretro.js new file: tools/webretro/cores/opera_libretro.wasm
152 lines
6.4 KiB
HTML
152 lines
6.4 KiB
HTML
<!DOCTYPE html>
|
||
<html lang="en"><!-- #BeginTemplate "/Templates/Advanced.dwt" --><!-- DW6 -->
|
||
|
||
<!-- Mirrored from www.mathsisfun.com/calculus/product-rule.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:49:02 GMT -->
|
||
<head>
|
||
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
|
||
|
||
<!-- #BeginEditable "doctitle" -->
|
||
<title>Product Rule</title>
|
||
<meta name="description" content="Math explained in easy language, plus puzzles, games, quizzes, worksheets and a forum. For K-12 kids, teachers and parents.">
|
||
<!-- #EndEditable -->
|
||
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
|
||
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
|
||
<meta name="HandheldFriendly" content="true">
|
||
<meta name="referrer" content="always">
|
||
<link rel="preload" href="../images/style/font-champ-bold.ttf" as="font" type="font/ttf" crossorigin="">
|
||
<link rel="preload" href="../style4.css" as="style">
|
||
<link rel="preload" href="../main4.js" as="script">
|
||
<link rel="stylesheet" href="../style4.css">
|
||
<script src="../main4.js" defer="defer"></script>
|
||
<!-- Global site tag (gtag.js) - Google Analytics -->
|
||
<script async="" src="https://www.googletagmanager.com/gtag/js?id=UA-29771508-1"></script>
|
||
<script>
|
||
window.dataLayer = window.dataLayer || [];
|
||
function gtag(){dataLayer.push(arguments);}
|
||
gtag('js', new Date());
|
||
gtag('config', 'UA-29771508-1');
|
||
</script>
|
||
</head>
|
||
|
||
<body id="bodybg" class="adv">
|
||
|
||
<div id="stt"></div>
|
||
<div id="adTop"></div>
|
||
<header>
|
||
<div id="hdr"></div>
|
||
<div id="tran"></div>
|
||
<div id="adHide"></div>
|
||
<div id="cookOK"></div>
|
||
</header>
|
||
|
||
<div class="mid">
|
||
|
||
<nav>
|
||
<div id="menuWide" class="menu"></div>
|
||
<div id="logo"><a href="../index.html"><img src="../images/style/logo-adv.svg" alt="Math is Fun Advanced"></a></div>
|
||
|
||
<div id="search" role="search"></div>
|
||
<div id="linkto"></div>
|
||
|
||
<div id="menuSlim" class="menu"></div>
|
||
<div id="menuTiny" class="menu"></div>
|
||
</nav>
|
||
|
||
<div id="extra"></div>
|
||
|
||
<article id="content" role="main">
|
||
|
||
<!-- #BeginEditable "Body" -->
|
||
|
||
|
||
<h1 class="center">Product Rule</h1>
|
||
|
||
<p>The product rule tells us the <a href="derivatives-introduction.html">derivative</a> of two functions <b>f</b> and <b>g</b> that are multiplied together:</p>
|
||
<p class="center large">(fg)’ = fg’ + gf’</p>
|
||
<p>(The little mark <span class="hilite">’</span> means "derivative of".)</p>
|
||
|
||
<div class="example">
|
||
|
||
<h3>Example: What is the derivative of cos(x)sin(x) ?</h3>
|
||
<p>We have two functions <b>cos(x)</b> and <b>sin(x)</b> multiplied together, so let's use the Product Rule:</p>
|
||
<p class="center large">(fg)’ = f g’ + f’ g</p>
|
||
<p>Which in our case becomes:</p>
|
||
<p class="center large">(cos(x)sin(x))’ = cos(x) sin(x)’ + cos(x)’ sin(x)</p>
|
||
We know (from <a href="derivatives-rules.html">Derivative Rules</a>) that:
|
||
|
||
|
||
<ul>
|
||
<li>sin(x)’ = cos(x)</li>
|
||
<li>cos(x)’ = −sin(x)</li>
|
||
</ul>
|
||
<p>So we can substitute:</p>
|
||
<p class="center large">(cos(x)sin(x))’ = cos(x) cos(x) + −sin(x) sin(x)</p>
|
||
<p>Which simplifies to:</p>
|
||
<p class="center large">(cos(x)sin(x))’ = cos<sup>2</sup>(x) − sin<sup>2</sup>(x)</p>
|
||
<p class="center larger"></p>
|
||
Answer: the derivative of cos(x)sin(x) = <b>cos<sup>2</sup>(x) − sin<sup>2</sup>(x)</b>
|
||
</div>
|
||
|
||
|
||
<h2>Why Does It Work?</h2>
|
||
|
||
<p>When we multiply two functions f(x) and g(x) the result is the <b>area fg</b>:</p>
|
||
<p class="center"><img src="images/product-rule.svg" alt="product rule" height="285" width="307"></p>
|
||
<p>The derivative is the rate of change, and when <b>x</b> changes a little then both <b>f</b> and <b>g</b> will also change a little (by Δf and Δg). In this example they both increase making the area bigger.</p>
|
||
<p>How much bigger?</p>
|
||
<p class="center large">Increase in area = Δ(fg) = fΔg + ΔfΔg + gΔf</p>
|
||
<p>As the change in x heads towards zero, the "ΔfΔg" term also heads to zero, and we get:</p>
|
||
<p class="center large">(fg)’ = fg’ + gf’</p>
|
||
|
||
|
||
<h2>Alternative Notation</h2>
|
||
|
||
<p>An alternative way of writing it (called Leibniz Notation) is:</p>
|
||
<p class="center large"><span class="intbl"><em>d</em><strong>dx</strong></span>(uv) = u<span class="intbl"><em>dv</em><strong>dx</strong></span> + v<span class="intbl"><em>du</em><strong>dx</strong></span> <span class="intbl"><strong></strong></span><span class="intbl"><strong></strong></span></p>
|
||
<!-- d/dx (uv) = du/dx v + u dv/dx -->
|
||
<p>Here is our example from before in Leibniz Notation:</p>
|
||
|
||
<div class="example">
|
||
|
||
<h3>Example: What is the derivative of cos(x)sin(x) ?</h3>
|
||
<p>This:</p>
|
||
<p class="center large"><span class="intbl"><em>d</em><strong>dx</strong></span>(uv) = u<span class="intbl"><em>dv</em><strong>dx</strong></span> + v<span class="intbl"><em>du</em><strong>dx</strong></span> <span class="intbl"><strong></strong></span></p>
|
||
<p>Becomes this:</p>
|
||
<p class="center large"><span class="intbl"><em>d</em><strong>dx</strong></span>(cos(x)sin(x)) = cos(x)<span class="intbl"><em>d(sin(x))</em><strong>dx</strong></span> + sin(x)<span class="intbl"><em>d(cos(x))</em><strong>dx</strong></span><span class="intbl"></span></p>
|
||
From <a href="derivatives-rules.html">Derivative Rules</a>:
|
||
|
||
|
||
<ul>
|
||
<li><span class="intbl"><em>d</em><strong>dx</strong></span>sin(x) = cos(x)</li>
|
||
<li><span class="intbl"><em>d</em><strong>dx</strong></span>cos(x) = −sin(x)</li>
|
||
</ul> So:
|
||
<p class="center large"><span class="intbl"><em>d</em><strong>dx</strong></span>(cos(x)sin(x)) = cos(x) cos(x) + −sin(x) sin(x)</p>
|
||
<p>Which simplifies to:</p>
|
||
<p class="center large"><span class="intbl"><em>d</em><strong>dx</strong></span>(cos(x)sin(x)) = cos<sup>2</sup>(x) − sin<sup>2</sup>(x)</p>
|
||
|
||
</div>
|
||
|
||
|
||
<h2>Three Functions</h2>
|
||
|
||
<p>For three functions multiplied together we can use:</p>
|
||
<p class="center large">(fgh)’ = f’gh + fg’h + fgh’</p>
|
||
<p> </p>
|
||
|
||
<div class="related">
|
||
<a href="derivatives-rules.html">Derivative Rules</a>
|
||
<a href="derivatives-introduction.html">Introduction to Derivatives</a>
|
||
<a href="index.html">Calculus Index</a>
|
||
</div>
|
||
<!-- #EndEditable -->
|
||
|
||
</article>
|
||
|
||
<div id="adend" class="centerfull noprint"></div>
|
||
<footer id="footer" class="centerfull noprint"></footer>
|
||
<div id="copyrt">Copyright © 2021 Rod Pierce</div>
|
||
|
||
</div>
|
||
</body><!-- #EndTemplate -->
|
||
<!-- Mirrored from www.mathsisfun.com/calculus/product-rule.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:49:02 GMT -->
|
||
</html> |