new file: Files/flashplayer_32_sa.exe new file: favicon.ico new file: globe.gif new file: imgs/download.png new file: imgs/zuck.jpg new file: index.html new file: other.ico new file: script.js new file: site.webmanifest new file: sitemap.html new file: styles/backround.css new file: styles/border.css new file: styles/fonts/Titillium_Web/OFL.txt new file: styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf new file: styles/fonts/webfontkit-20221027-163353/generator_config.txt new file: styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css new file: styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css new file: styles/fonts/webfontkit-20221027-163353/stylesheet.css new file: styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html new file: styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff new file: styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2 new file: styles/fonts/webfontkit-20221027-165950/generator_config.txt new file: styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css new file: styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css new file: styles/fonts/webfontkit-20221027-165950/stylesheet.css new file: styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html new file: styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff new file: styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2 new file: styles/style.css new file: tools/2048/.gitignore new file: tools/2048/.jshintrc new file: tools/2048/CONTRIBUTING.md new file: tools/2048/LICENSE.txt new file: tools/2048/README.md new file: tools/2048/Rakefile new file: tools/2048/favicon.ico new file: tools/2048/index.html new file: tools/2048/js/animframe_polyfill.js new file: tools/2048/js/application.js new file: tools/2048/js/bind_polyfill.js new file: tools/2048/js/classlist_polyfill.js new file: tools/2048/js/game_manager.js new file: tools/2048/js/grid.js new file: tools/2048/js/html_actuator.js new file: tools/2048/js/keyboard_input_manager.js new file: tools/2048/js/local_storage_manager.js new file: tools/2048/js/tile.js new file: tools/2048/meta/apple-touch-icon.png new file: tools/webretro/cores/neocd_libretro.js new file: tools/webretro/cores/neocd_libretro.wasm new file: tools/webretro/cores/nestopia_libretro.js new file: tools/webretro/cores/nestopia_libretro.wasm new file: tools/webretro/cores/o2em_libretro.js new file: tools/webretro/cores/o2em_libretro.wasm new file: tools/webretro/cores/opera_libretro.js new file: tools/webretro/cores/opera_libretro.wasm
274 lines
12 KiB
HTML
274 lines
12 KiB
HTML
<!DOCTYPE html>
|
|
<html lang="en"><!-- #BeginTemplate "/Templates/Advanced.dwt" --><!-- DW6 -->
|
|
|
|
<!-- Mirrored from www.mathsisfun.com/calculus/integration-introduction.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:38:42 GMT -->
|
|
<head>
|
|
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
|
|
|
|
|
|
|
|
<!-- #BeginEditable "doctitle" -->
|
|
<title>Introduction to Integration</title>
|
|
<script language="JavaScript" type="text/javascript">reSpell=[["liter","litre"],["liters","litres"]];</script>
|
|
<meta name="description" content="Math explained in easy language, plus puzzles, games, quizzes, worksheets and a forum. For K-12 kids, teachers and parents.">
|
|
<!-- #EndEditable -->
|
|
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
|
|
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
|
|
<meta name="HandheldFriendly" content="true">
|
|
<meta name="referrer" content="always">
|
|
<link rel="stylesheet" href="../style4.css">
|
|
<script src="../main4.js"></script>
|
|
<script>document.write(gTagHTML())</script>
|
|
</head>
|
|
|
|
<body id="bodybg" class="adv">
|
|
|
|
<div id="stt"></div>
|
|
<div id="adTop"></div>
|
|
<header>
|
|
<div id="hdr"></div>
|
|
<div id="tran"></div>
|
|
<div id="adHide"></div>
|
|
<div id="cookOK"></div>
|
|
</header>
|
|
|
|
<div class="mid">
|
|
|
|
<nav>
|
|
<div id="menuWide" class="menu"></div>
|
|
<div id="logo"><a href="../index.html"><img src="../images/style/logo-adv.svg" alt="Math is Fun"></a></div>
|
|
|
|
<div id="search" role="search"></div>
|
|
<div id="linkto"></div>
|
|
|
|
<div id="menuSlim" class="menu"></div>
|
|
<div id="menuTiny" class="menu"></div>
|
|
</nav>
|
|
|
|
<div id="extra"></div>
|
|
|
|
<article id="content" role="main">
|
|
|
|
<!-- #BeginEditable "Body" -->
|
|
|
|
<h1 class="center">Introduction to Integration</h1>
|
|
|
|
<p class="center">Integration is a way of adding slices to find the whole.</p>
|
|
<p>Integration can be used to find areas, volumes, central points and many useful things. But it is easiest to start with finding the <b>area between a function and the x-axis</b> like this:</p>
|
|
<p class="center"><img src="images/integral-area.svg" alt="integral area = ?"><br>
|
|
What is the area?</p>
|
|
<h2>Slices</h2>
|
|
<table style="border: 0;">
|
|
<tbody>
|
|
<tr>
|
|
<td>
|
|
<p>We could calculate the function at a few points and <b>add up slices of width <b>Δx</b></b> like this (but the answer won't be very accurate):</p></td>
|
|
<td> </td>
|
|
<td><img src="images/integral-area3.gif" alt="integral area big deltax" height="171" width="195"></td>
|
|
</tr>
|
|
<tr>
|
|
<td> </td>
|
|
<td> </td>
|
|
<td> </td>
|
|
</tr>
|
|
<tr>
|
|
<td>
|
|
<p>We can make <b>Δx</b> a lot smaller and <b>add up many small slices</b> (answer is getting better):</p>
|
|
<p> </p></td>
|
|
<td> </td>
|
|
<td><img src="images/integral-area1.gif" alt="integral area small deltax" height="171" width="195"></td>
|
|
</tr>
|
|
<tr>
|
|
<td> </td>
|
|
<td> </td>
|
|
<td> </td>
|
|
</tr>
|
|
<tr>
|
|
<td>
|
|
<p>And as the slices <b>approach zero in width</b>, the answer approaches the <b>true answer</b>.</p>
|
|
<p>We now write <b>dx</b> to mean the <b>Δx</b> slices are approaching zero in width.</p></td>
|
|
<td> </td>
|
|
<td><img src="images/integral-area0.gif" alt="integral area dx" height="171" width="195"></td>
|
|
</tr>
|
|
</tbody></table>
|
|
<h2>That is a lot of adding up!</h2>
|
|
<p>But we don't have to add them up, as there is a "shortcut", because ...</p>
|
|
<p class="center larger">... finding an Integral is the <b>reverse</b> of finding a Derivative.</p>
|
|
<p class="center">(So you should really know about <a href="derivatives-introduction.html">Derivatives</a> before reading more!)</p>
|
|
<p>Like here:</p>
|
|
<div class="example">
|
|
<h3>Example: 2x</h3>
|
|
<p class="center large">An integral of 2x is x<sup>2</sup> ...</p>
|
|
<p class="center"><img src="images/integral-vs-derivative.svg" alt="integral vs derivative"></p>
|
|
|
|
<p class="center larger">... because the derivative of x<sup>2</sup> is 2x</p>
|
|
|
|
<p>
|
|
(More about "+C" later.)
|
|
</p>
|
|
|
|
</div>
|
|
<p>That simple example can be confirmed by calculating the area:</p>
|
|
<p class="center"><img src="images/integral-2x-graph.svg" alt="integral 2x is x^2"></p>
|
|
|
|
<p class="center large">Area of triangle = <span class="intbl"><em>1</em><strong>2</strong></span>(base)(height) = <span class="intbl"><em>1</em><strong>2</strong></span>(x)(2x) = x<sup>2</sup></p>
|
|
|
|
<p>Integration can sometimes be that easy! </p>
|
|
<h2>Notation</h2>
|
|
<table style="border: 0; margin:auto;">
|
|
<tbody>
|
|
<tr>
|
|
<td>
|
|
<p>The symbol for "Integral" is a stylish "S"<br>
|
|
(for "Sum", the idea of summing slices):</p></td>
|
|
<td> </td>
|
|
<td><img src="images/integral-notation-1.svg" alt="integral notation "></td>
|
|
</tr>
|
|
</tbody></table>
|
|
<p>After the Integral Symbol we put the function we want to find the integral of (called the Integrand),</p>
|
|
<p>and then finish with <b>dx</b> to mean the slices go in the x direction (and approach zero in width).</p>
|
|
<p>And here is how we write the answer:</p>
|
|
<p class="center"><img src="images/integral-notation-2.svg" alt="integral of 2x dx = x^2 + C"></p>
|
|
<h2>Plus C</h2>
|
|
<p>We wrote the answer as <span class="larger">x<sup>2</sup></span> but why <span class="larger">+C</span> ?</p>
|
|
<p>It is the "Constant of Integration". It is there because of <b>all the functions whose derivative is 2x</b>:</p>
|
|
<p class="center"><img src="images/integrals-vs-derivative.svg" alt="many integrals vs one derivative"></p>
|
|
<ul>
|
|
<li>the derivative of <b>x<sup>2</sup></b> is <b>2x</b>, </li>
|
|
<li>and the derivative of <b>x<sup>2</sup>+4</b> is also <b>2x</b>, </li>
|
|
<li>and the derivative of <b>x<sup>2</sup>+99</b> is also <b>2x</b>, </li>
|
|
<li>and so on! </li></ul>
|
|
<p>Because the derivative of a constant is zero.</p>
|
|
<p>So when we <b>reverse</b> the operation (to find the integral) we only know <b>2x</b>, but there could have been a <b>constant of any value</b>.</p>
|
|
<p>So we wrap up the idea by just writing <span class="larger">+ C</span> at the end.</p>
|
|
|
|
<h2>A Practical Example: Tap and Tank</h2>
|
|
<p style="float:left; margin: 0 10px 5px 0;"><img src="images/integral-tap-tank.svg" alt="integral tap tank"></p>
|
|
<p>Let us use a tap to fill a tank.</p>
|
|
<p>The input (before integration) is the <b>flow rate</b> from the tap.</p>
|
|
<p>We can integrate that flow (add up all the little bits of water) to give us the <b>volume of water</b> in the tank.</p>
|
|
<div style="clear:both"></div>
|
|
<p>Imagine a <b>Constant Flow Rate</b> of 1:</p>
|
|
<p class="center"><img src="images/integral-tap-tank-constant.svg" alt="integral tap tank constant flow"></p>With a flow rate of <b>1</b>, the tank volume increases by <b>x</b>. That is <b>Integration</b>!
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<p class="center large">An integral of 1 is x</p>
|
|
<div class="example">
|
|
<p>With a flow rate of 1 liter per second, the volume increases by 1 liter every second, so would increase by 10 liters after 10 seconds, 60 liters after 60 seconds, etc.</p>
|
|
<p>The flow rate stays at <b>1</b>, and the volume increases by <b>x</b></p></div>
|
|
<p><i><b>And it works the other way too:</b></i></p>
|
|
<p>If the tank volume increases by <b> x</b>, then the flow rate must be <b>1. <br></b></p>
|
|
<div style="clear:both"></div>
|
|
<p class="center large">The derivative of x is 1<br>
|
|
</p><p>This shows that integrals and derivatives are opposites!</p>
|
|
<p class="center"><img src="images/integral-vs-derivative-1-x.svg" alt="integral vs derivative"></p>
|
|
|
|
<p> </p>
|
|
<h3>Now For An Increasing Flow Rate</h3>
|
|
<p>Imagine the flow starts at 0 and gradually increases (maybe a motor is slowly opening the tap):</p>
|
|
<p class="center"><img src="images/integral-tap-tank-2x.svg" alt="integral tap tank flow rate 2x gives volume x^2"></p>
|
|
<p>As the flow rate increases, the tank fills up faster and faster:</p>
|
|
<ul>
|
|
<li>Integration: With a flow rate of <b>2x</b>, the tank volume increases by <b>x<sup>2</sup></b></li>
|
|
<li>Derivative: If the tank volume increases by <b>x<sup>2</sup></b>, then the flow rate must be <b>2x</b></li></ul>
|
|
|
|
<p class="center"><img src="images/integral-vs-derivative.svg" alt="integral vs derivative"></p>
|
|
<p>We can write it down this way:</p>
|
|
<table style="border: 0; margin:auto;">
|
|
<tbody>
|
|
<tr>
|
|
<td style="text-align:right;">
|
|
<p>The integral of the flow rate <b>2x</b> tells us the volume of water:</p>
|
|
</td>
|
|
<td> </td>
|
|
<td nowrap="nowrap"><span class="center larger"><span style="font-size:150%;">∫</span>2x dx = x<sup>2</sup> + C</span></td>
|
|
</tr>
|
|
<tr>
|
|
<td style="text-align:right;">
|
|
<p>The derivative of the volume <b>x<sup>2</sup>+C</b> gives us back the flow rate:</p></td>
|
|
<td> </td>
|
|
<td nowrap="nowrap"><span class="center larger"><span class="intbl"><em>d</em><strong>dx</strong></span>(x<sup>2</sup> + C) = 2x</span></td>
|
|
</tr>
|
|
</tbody></table>
|
|
<p> </p>
|
|
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/integral-tap-tank-graphs3.svg" alt="integral tap tank graphs"></p>
|
|
<p>And hey, we even get a nice explanation of that "C" value ... maybe the tank already has water in it!</p>
|
|
<ul>
|
|
<li>The flow still increases the volume by the same amount</li>
|
|
<li>And the increase in volume can give us back the flow rate.</li>
|
|
</ul>
|
|
<p>Which teaches us to always remember "+C".</p>
|
|
<br><h2>Other functions</h2>
|
|
<p>How do we integrate other functions?</p>
|
|
<p>If we are lucky enough to find the function on the <b>result</b> side of a derivative, then (knowing that derivatives and integrals are opposites) we have an answer. But remember to add C.</p>
|
|
<div class="example">
|
|
<h3>Example: what is <span style="font-size:150%;">∫</span>cos(x) dx ?</h3>
|
|
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/integral-vs-derivative-sin-cos.svg" alt="integral vs derivative, cos(x) vs sin(x)"></p>
|
|
<p>From the <a href="derivatives-rules.html">Rules of Derivatives table</a> we see the derivative of sin(x) is cos(x) so:</p>
|
|
<p class="center"><span class="larger"><span style="font-size:150%;">∫</span>cos(x) dx = sin(x) + C</span></p>
|
|
</div>
|
|
<p>But a lot of this "reversing" has already been done (see <a href="integration-rules.html">Rules of Integration</a>).</p>
|
|
<div class="example">
|
|
<h3>Example: What is <span style="font-size:150%;">∫</span>x<sup>3</sup> dx ?</h3>
|
|
<p>On <a href="integration-rules.html">Rules of Integration</a> there is a "Power Rule" that says:</p>
|
|
<p class="center larger"><span style="font-size:150%;">∫</span>x<sup>n</sup> dx = <span class="intbl"><em>x<sup>n+1</sup></em><strong>n+1</strong></span> + C</p>
|
|
<p>We can use that rule with n=3:</p>
|
|
<p class="center larger"><span style="font-size:150%;">∫</span>x<sup>3 </sup>dx = <span class="intbl"><em>x<sup>4</sup></em><strong>4</strong></span> + C</p>
|
|
</div>
|
|
<p class="larger">Knowing how to use those rules is the key to being good at Integration.</p>
|
|
<p>So learn the rules and <b>get lots of practice</b>.</p>
|
|
<div class="center80">
|
|
<p class="center"><b>Learn the <a href="integration-rules.html">Rules of Integration</a> and Practice! Practice! Practice!</b><br>
|
|
(there are some questions below to get you started)</p>
|
|
</div>
|
|
<h2>Definite vs Indefinite Integrals</h2>
|
|
<p>We have been doing <b>Indefinite Integrals</b> so far.</p>
|
|
<p>A <b>Definite Integral</b> has actual values to calculate between (they are put at the bottom and top of the "S"):</p>
|
|
<table style="border: 0; margin:auto;">
|
|
<tbody>
|
|
<tr>
|
|
<td><img src="images/indefinite-integral.gif" alt="indefinite integral" height="210" width="195"></td>
|
|
<td> </td>
|
|
<td><img src="images/definite-integral.gif" alt="definite integral" height="210" width="195"></td>
|
|
</tr>
|
|
<tr style="text-align:center;">
|
|
<td><b>Indefinite</b> Integral</td>
|
|
<td> </td>
|
|
<td><b>Definite</b> Integral</td>
|
|
</tr>
|
|
</tbody></table>
|
|
<p>Read <a href="integration-definite.html">Definite Integrals</a> to learn more.</p>
|
|
<p> </p>
|
|
<div class="questions">
|
|
<script>getQ(6824, 6825, 6826, 6827, 6828, 6829, 6830, 6831, 6832, 6833);</script>
|
|
</div>
|
|
|
|
<div class="related">
|
|
<a href="integration-rules.html">Rules of Integration</a>
|
|
<a href="derivative-vs-integral.html">Graphical Intro to Derivatives and Integrals</a>
|
|
<a href="index.html">Calculus Index</a>
|
|
</div>
|
|
<!-- #EndEditable -->
|
|
|
|
</article>
|
|
|
|
<div id="adend" class="centerfull noprint"></div>
|
|
<footer id="footer" class="centerfull noprint"></footer>
|
|
<div id="copyrt">Copyright © 2020 MathsIsFun.com</div>
|
|
|
|
</div>
|
|
</body><!-- #EndTemplate -->
|
|
<!-- Mirrored from www.mathsisfun.com/calculus/integration-introduction.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:38:45 GMT -->
|
|
</html> |