Lucas Kent e39465ad2f Changes to be committed:
new file:   Files/flashplayer_32_sa.exe
	new file:   favicon.ico
	new file:   globe.gif
	new file:   imgs/download.png
	new file:   imgs/zuck.jpg
	new file:   index.html
	new file:   other.ico
	new file:   script.js
	new file:   site.webmanifest
	new file:   sitemap.html
	new file:   styles/backround.css
	new file:   styles/border.css
	new file:   styles/fonts/Titillium_Web/OFL.txt
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf
	new file:   styles/fonts/webfontkit-20221027-163353/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2
	new file:   styles/fonts/webfontkit-20221027-165950/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2
	new file:   styles/style.css
	new file:   tools/2048/.gitignore
	new file:   tools/2048/.jshintrc
	new file:   tools/2048/CONTRIBUTING.md
	new file:   tools/2048/LICENSE.txt
	new file:   tools/2048/README.md
	new file:   tools/2048/Rakefile
	new file:   tools/2048/favicon.ico
	new file:   tools/2048/index.html
	new file:   tools/2048/js/animframe_polyfill.js
	new file:   tools/2048/js/application.js
	new file:   tools/2048/js/bind_polyfill.js
	new file:   tools/2048/js/classlist_polyfill.js
	new file:   tools/2048/js/game_manager.js
	new file:   tools/2048/js/grid.js
	new file:   tools/2048/js/html_actuator.js
	new file:   tools/2048/js/keyboard_input_manager.js
	new file:   tools/2048/js/local_storage_manager.js
	new file:   tools/2048/js/tile.js
    new file:   tools/2048/meta/apple-touch-icon.png
	new file:   tools/webretro/cores/neocd_libretro.js
	new file:   tools/webretro/cores/neocd_libretro.wasm
	new file:   tools/webretro/cores/nestopia_libretro.js
	new file:   tools/webretro/cores/nestopia_libretro.wasm
	new file:   tools/webretro/cores/o2em_libretro.js
	new file:   tools/webretro/cores/o2em_libretro.wasm
	new file:   tools/webretro/cores/opera_libretro.js
	new file:   tools/webretro/cores/opera_libretro.wasm
2022-11-02 08:40:01 -04:00

224 lines
8.3 KiB
HTML

<!DOCTYPE html>
<html lang="en"><!-- #BeginTemplate "/Templates/Advanced.dwt" --><!-- DW6 -->
<!-- Mirrored from www.mathsisfun.com/calculus/homogeneous-function.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:49:27 GMT -->
<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
<!-- #BeginEditable "doctitle" -->
<title>Homogeneous Functions</title>
<meta name="description" content="Math explained in easy language, plus puzzles, games, quizzes, worksheets and a forum. For K-12 kids, teachers and parents.">
<!-- #EndEditable -->
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
<meta name="HandheldFriendly" content="true">
<meta name="referrer" content="always">
<link rel="stylesheet" href="../style4.css">
<script src="../main4.js"></script>
<script>document.write(gTagHTML())</script>
</head>
<body id="bodybg" class="adv">
<div id="stt"></div>
<div id="adTop"></div>
<header>
<div id="hdr"></div>
<div id="tran"></div>
<div id="adHide"></div>
<div id="cookOK"></div>
</header>
<div class="mid">
<nav>
<div id="menuWide" class="menu"></div>
<div id="logo"><a href="../index.html"><img src="../images/style/logo-adv.svg" alt="Math is Fun"></a></div>
<div id="search" role="search"></div>
<div id="linkto"></div>
<div id="menuSlim" class="menu"></div>
<div id="menuTiny" class="menu"></div>
</nav>
<div id="extra"></div>
<article id="content" role="main">
<!-- #BeginEditable "Body" -->
<h1 class="center">Homogeneous Functions</h1>
<h2>Homogeneous</h2>
<p>To be <b>Homogeneous</b> a function must pass this test:</p>
<p class="center larger">f(zx, zy)
=
z<sup>n</sup> f(x, y)</p>
<p>In other words</p>
<div class="tbl">
<div class="row">
<span class="lt"><b>Homogeneous</b> is when we can take a function:</span>
<span class="rt">f(x, y)</span>
</div>
<div class="row">
<span class="lt">multiply each variable by z:</span>
<span class="rt">f(zx, zy)</span>
</div>
<div class="row">
<span class="lt"><b>and then</b> can rearrange it to get this:</span>
<span class="rt">z<sup>n</sup> f(x, y)</span>
</div>
</div>
<p>An example will help:</p>
<div class="example">
<h3>Example: x + 3y</h3>
<div class="tbl">
<div class="row">
<span class="lt">Start with:</span>
<span class="rt">f(x, y) = x + 3y</span>
</div>
<div class="row">
<span class="lt">Multiply each variable by z:</span>
<span class="rt">f(zx, zy) = zx + 3zy</span>
</div>
<div class="row">
<span class="lt">Let's rearrange it by factoring out z:</span>
<span class="rt">f(zx, zy) = z(x + 3y)</span>
</div>
<div class="row">
<span class="lt">And <b>x + 3y</b> is <b>f(x, y)</b>:</span>
<span class="rt">f(zx, zy) = z f(x, y)</span>
</div>
<div class="row">
<span class="lt">Which is what we wanted, with n=1:</span>
<span class="rt">f(zx, zy) = z<sup>1</sup> f(x, y)</span>
</div>
</div>
<p>Yes, <b>x + 3y</b> is homogeneous!</p>
</div>
<p>The value of <b>n</b> is called the degree. So in that example the degree is <b>1</b>.</p>
<div class="example">
<h3>Example: 4x<sup>2</sup> + y<sup>2</sup></h3>
<div class="tbl">
<div class="row">
<span class="lt">Start with:</span>
<span class="rt">f(x, y) = 4x<sup>2</sup> + y<sup>2</sup></span>
</div>
<div class="row">
<span class="lt">Multiply each variable by z:</span>
<span class="rt">f(zx, zy) = 4(zx)<sup>2</sup> + (zy)<sup>2</sup></span>
</div>
<div class="row">
<span class="lt">Which is:</span>
<span class="rt">f(zx, zy) = 4z<sup>2</sup>x<sup>2</sup> + z<sup>2</sup>y<sup>2</sup></span>
</div>
<div class="row">
<span class="lt">Factoring out <b>z<sup>2</sup></b>:</span>
<span class="rt">f(zx, zy) = z<sup>2</sup>(4x<sup>2</sup> + y<sup>2</sup>)</span>
</div>
<div class="row">
<span class="lt">And <b>4x<sup>2</sup> + y<sup>2</sup></b> is <b>f(x, y)</b>:</span>
<span class="rt">f(zx, zy) = z<sup>2</sup> f(x, y)</span>
</div>
</div>
<p>Yes, <b>4x<sup>2</sup> + y<sup>2</sup></b> is homogeneous.</p>
<p>And its degree is 2.</p>
</div>
<p>How about this one:</p>
<div class="example">
<h3>Example: x<sup>3</sup> + y<sup>2</sup></h3>
<div class="tbl">
<div class="row">
<span class="lt">Start with:</span>
<span class="rt">f(x, y) = x<sup>3</sup> + y<sup>2</sup></span>
</div>
<div class="row">
<span class="lt">Multiply each variable by z:</span>
<span class="rt">f(zx, zy) = (zx)<sup>3</sup> + (zy)<sup>2</sup></span>
</div>
<div class="row">
<span class="lt">Which is:</span>
<span class="rt">f(zx, zy) = z<sup>3</sup>x<sup>3</sup> + z<sup>2</sup>y<sup>2</sup></span>
</div>
<div class="row">
<span class="lt">Factoring out <b>z<sup>2</sup></b>:</span>
<span class="rt">f(zx, zy) = z<sup>2</sup>(zx<sup>3</sup> + y<sup>2</sup>)</span>
</div>
<div class="row">
<span class="lt">But <b>zx<sup>3</sup> + y<sup>2</sup></b> is NOT <b>f(x, y)</b>!</span>
</div>
</div>
<p>So <b>x<sup>3</sup> + y<sup>2</sup></b> is NOT homogeneous.</p>
<p>And notice that x and y have different powers:
<span class="rt">x<sup>3</sup></span> vs
<span class="rt">y<sup>2</sup></span>. For polynomial functions that is often a good test.</p>
</div>
<p>But not all functions are polynomials. How about this one:</p>
<div class="example">
<h3>Example: the function x cos(y/x)</h3>
<div class="tbl">
<div class="row">
<span class="lt">Start with:</span>
<span class="rt">f(x, y) = x cos(y/x)</span>
</div>
<div class="row">
<span class="lt">Multiply each variable by z:</span>
<span class="rt">f(zx, zy) = zx cos(zy/zx)</span>
</div>
<div class="row">
<span class="lt">Which is:</span>
<span class="rt">f(zx, zy) = zx cos(y/x)</span>
</div>
<div class="row">
<span class="lt">Factoring out z:</span>
<span class="rt">f(zx, zy) = z(x cos(y/x))</span>
</div>
<div class="row">
<span class="lt">And <b>x cos(y/x)</b> is <b>f(x, y):</b></span>
<span class="rt">f(zx, zy) = z<sup>1 </sup>f(x, y)</span>
</div>
</div>
<p>So <b>x cos(y/x)</b> is homogeneous, with degree of 1.</p>
<p>Notice that (y/x) is "safe" because (zy/zx) cancels back to (y/x)</p>
</div>
<div class="words">
<img style="float:right; margin: 0 0 5px 10px;" src="images/glass-milk.jpg" alt="milk"><p>Homogeneous, in English, means "of the same kind"</p>
<p>For example "Homogenized Milk" has the fatty parts spread evenly through the milk (rather than having milk with a fatty layer on top.)</p>
</div>
<p class="large">Homogeneous applies to functions like <b>f(x)</b>, <b>f(x, y, z)</b> etc. It is a general idea.</p>
<h2>Homogeneous Differential Equations</h2>
<p>A first order <a href="differential-equations.html">Differential Equation</a> is <b>homogeneous</b> when it can be in this form:</p>
<p class="center"><img src="images/homogneous-equation.svg" alt="homogeneous equation"></p>
<div class="def">
<p>In other words, when it can be like this:</p>
<p class="center larger">M(x, y) dx + N(x, y) dy = 0</p>
<p><b>And</b> both <b>M(x, y)</b> and <b>N(x, y)</b> are homogeneous functions of the same degree.</p>
</div>
<p>Find out more on <span class="center"><a href="differential-equations-homogeneous.html">Solving Homogeneous Differential Equations</a></span>.</p>
<p>&nbsp;</p>
<p>&nbsp;</p>
<div class="related">
<a href="index.html">Calculus Index</a>
</div>
<!-- #EndEditable -->
</article>
<div id="adend" class="centerfull noprint"></div>
<footer id="footer" class="centerfull noprint"></footer>
<div id="copyrt">Copyright © 2020 MathsIsFun.com</div>
</div>
</body><!-- #EndTemplate -->
<!-- Mirrored from www.mathsisfun.com/calculus/homogeneous-function.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:49:28 GMT -->
</html>