lkarch.org/tools/mathisfun/www.mathsisfun.com/calculus/differential-equations-variation-parameters.html
Lucas Kent e39465ad2f Changes to be committed:
new file:   Files/flashplayer_32_sa.exe
	new file:   favicon.ico
	new file:   globe.gif
	new file:   imgs/download.png
	new file:   imgs/zuck.jpg
	new file:   index.html
	new file:   other.ico
	new file:   script.js
	new file:   site.webmanifest
	new file:   sitemap.html
	new file:   styles/backround.css
	new file:   styles/border.css
	new file:   styles/fonts/Titillium_Web/OFL.txt
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf
	new file:   styles/fonts/webfontkit-20221027-163353/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2
	new file:   styles/fonts/webfontkit-20221027-165950/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2
	new file:   styles/style.css
	new file:   tools/2048/.gitignore
	new file:   tools/2048/.jshintrc
	new file:   tools/2048/CONTRIBUTING.md
	new file:   tools/2048/LICENSE.txt
	new file:   tools/2048/README.md
	new file:   tools/2048/Rakefile
	new file:   tools/2048/favicon.ico
	new file:   tools/2048/index.html
	new file:   tools/2048/js/animframe_polyfill.js
	new file:   tools/2048/js/application.js
	new file:   tools/2048/js/bind_polyfill.js
	new file:   tools/2048/js/classlist_polyfill.js
	new file:   tools/2048/js/game_manager.js
	new file:   tools/2048/js/grid.js
	new file:   tools/2048/js/html_actuator.js
	new file:   tools/2048/js/keyboard_input_manager.js
	new file:   tools/2048/js/local_storage_manager.js
	new file:   tools/2048/js/tile.js
    new file:   tools/2048/meta/apple-touch-icon.png
	new file:   tools/webretro/cores/neocd_libretro.js
	new file:   tools/webretro/cores/neocd_libretro.wasm
	new file:   tools/webretro/cores/nestopia_libretro.js
	new file:   tools/webretro/cores/nestopia_libretro.wasm
	new file:   tools/webretro/cores/o2em_libretro.js
	new file:   tools/webretro/cores/o2em_libretro.wasm
	new file:   tools/webretro/cores/opera_libretro.js
	new file:   tools/webretro/cores/opera_libretro.wasm
2022-11-02 08:40:01 -04:00

537 lines
39 KiB
HTML
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html lang="en"><!-- #BeginTemplate "/Templates/Advanced.dwt" --><!-- DW6 -->
<!-- Mirrored from www.mathsisfun.com/calculus/differential-equations-variation-parameters.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:49:30 GMT -->
<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
<!-- #BeginEditable "doctitle" -->
<title>The Method of Variation of Parameters</title>
<meta name="description" content="Math explained in easy language, plus puzzles, games, quizzes, videos and worksheets. For K-12 kids, teachers and parents.">
<script>Author='Les Bill Gates, Jesus Montes and Rod Pierce';</script>
<style>
.integral { font: 200% Georgia, Arial; position: relative; top: 5px; padding: 0 1px 0 0.2rem;}
</style>
<!-- #EndEditable -->
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
<meta name="HandheldFriendly" content="true">
<meta name="referrer" content="always">
<link rel="preload" href="../images/style/font-champ-bold.ttf" as="font" type="font/ttf" crossorigin="">
<link rel="preload" href="../style4.css" as="style">
<link rel="preload" href="../main4.js" as="script">
<link rel="stylesheet" href="../style4.css">
<script src="../main4.js" defer="defer"></script>
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async="" src="https://www.googletagmanager.com/gtag/js?id=UA-29771508-1"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'UA-29771508-1');
</script>
</head>
<body id="bodybg" class="adv">
<div id="stt"></div>
<div id="adTop"></div>
<header>
<div id="hdr"></div>
<div id="tran"></div>
<div id="adHide"></div>
<div id="cookOK"></div>
</header>
<div class="mid">
<nav>
<div id="menuWide" class="menu"></div>
<div id="logo"><a href="../index.html"><img src="../images/style/logo-adv.svg" alt="Math is Fun Advanced"></a></div>
<div id="search" role="search"></div>
<div id="linkto"></div>
<div id="menuSlim" class="menu"></div>
<div id="menuTiny" class="menu"></div>
</nav>
<div id="extra"></div>
<article id="content" role="main">
<!-- #BeginEditable "Body" -->
<h1 class="center">The Method of Variation of Parameters</h1>
<div class="def">
<p>This page is about second order differential equations of this type:</p>
<p class="center large"><span class="intbl"><em>d<sup>2</sup>y</em><strong>dx<sup>2</sup></strong></span> + P(x)<span class="intbl"><em>dy</em><strong>dx</strong></span> + Q(x)y
= f(x)</p>
<p>where P(x), Q(x) and f(x) are functions of x.</p>
</div><div class="center80">
<p>Please read <a href="differential-equations-second-order.html">Introduction to Second Order Differential Equations</a> first, it shows how to solve the simpler "homogeneous" case where f(x)=0</p></div>
<h2>Two Methods</h2>
<p>There are two main methods to solve equations like</p>
<p class="center larger"><span class="intbl"><em>d<sup>2</sup>y</em><strong>dx<sup>2</sup></strong></span> + P(x)<span class="intbl"><em>dy</em><strong>dx</strong></span> + Q(x)y
= f(x)</p>
<p class="dotpoint"><a href="differential-equations-undetermined-coefficients.html">Undetermined Coefficients</a> which only works when f(x) is a polynomial, exponential, sine, cosine or a linear combination of those.</p>
<p class="dotpoint"><span class="center"><b>Variation of Parameters</b></span> (that we will learn here) which works on a wide range of functions but is a little messy to use.</p>
<h2>Variation of Parameters</h2>
<p>To keep things simple, we are only going to look at the case:</p>
<p class="center large"><span class="intbl"><em>d<sup>2</sup>y</em><strong>dx<sup>2</sup></strong></span> + p<span class="intbl"><em>dy</em><strong>dx</strong></span> + qy = f(x)</p>
where p and q are constants and f(x) is a non-zero function of x.
<p>The <strong>complete solution</strong> to such an equation can be found
by combining two types of solution:</p>
<ol>
<li style="text-align: justify;">The <b>general solution</b> of the
homogeneous equation <span class="intbl"><em>d<sup>2</sup>y</em><strong>dx<sup>2</sup></strong></span> + p<span class="intbl"><em>dy</em><strong>dx</strong></span> + qy = 0</li>
<li style="text-align: justify;"><b>Particular solutions</b> of the
non-homogeneous equation <span class="intbl"><em>d<sup>2</sup>y</em><strong>dx<sup>2</sup></strong></span> + p<span class="intbl"><em>dy</em><strong>dx</strong></span> + qy =
f(x)</li>
</ol>
<p>Note that f(x) could be a single function or a sum of two or more
functions.</p>
<p>Once we have found the general solution and all the particular
solutions, then the final complete solution is found by adding all the
solutions together.</p>
<p>This method relies on <a href="integration-introduction.html">integration.</a></p>
<p>The problem with this method is that, although it may yield a solution,
in some cases the solution has to be left as an integral.</p>
<h2>Start with the General Solution</h2>
<p>On <a href="differential-equations-second-order.html">Introduction to Second Order Differential Equations</a> we learn how to find the general solution.</p>
<p>Basically we take the equation</p>
<p class="center large"><span class="intbl"><em>d<sup>2</sup>y</em><strong>dx<sup>2</sup></strong></span> + p<span class="intbl"><em>dy</em><strong>dx</strong></span> + qy = 0</p>
<p>and reduce it to the "characteristic equation":</p>
<p class="center large">r<sup>2</sup> + pr + q = 0</p>
<p>Which is a quadratic equation that has three possible solution types depending on the discriminant <b>p<sup>2</sup> 4q</b>. When <b>p<sup>2</sup> 4q</b> is</p>
<p class="dotpoint"><b>positive</b> we get two real roots, and the solution is</p>
<p class="center large">y = Ae<sup>r<sub>1</sub>x</sup> + Be<sup>r<sub>2</sub>x</sup></p>
<p class="dotpoint"><b>zero</b> we get one real root, and the solution is</p>
<p class="center large">y = Ae<sup>rx</sup> + Bxe<sup>rx</sup></p>
<p class="dotpoint"><b>negative</b> we get two complex roots <b>r<sub>1</sub> = v + wi</b> and <b>r<sub>2</sub> = v wi</b>, and the solution is</p>
<p class="center large">y = e<sup>vx</sup> ( Ccos(wx) + iDsin(wx) )</p>
<h2>The Fundamental Solutions of The Equation</h2>
<p>In all three cases above "y" is made of two parts:</p>
<ul>
<li><b>y = Ae<sup>r<sub>1</sub>x</sup> + Be<sup>r<sub>2</sub>x</sup></b> is made of <b>y<sub>1</sub> = Ae<sup>r<sub>1</sub>x</sup></b> and <b>y<sub>2</sub> = Be<sup>r<sub>2</sub>x</sup></b></li>
<li><b>y = Ae<sup>rx</sup> + Bxe<sup>rx</sup></b> is made of <b>y<sub>1</sub> = Ae<sup>rx</sup></b> and <b>y<sub>2</sub> = Bxe<sup>rx</sup></b></li>
<li><b>y = e<sup>vx</sup> ( Ccos(wx) + iDsin(wx) )</b> is made of <b>y<sub>1</sub> = e<sup>vx</sup>Ccos(wx)</b> and <b>y<sub>2</sub> = e<sup>vx</sup>iDsin(wx)</b></li>
</ul>
<p>y<sub>1</sub> and y<sub>2</sub> are known as the fundamental solutions of the equation</p>
<p>And y<sub>1</sub> and y<sub>2</sub> are said to be <b>linearly
independent</b> because neither function is a constant multiple of the
other.</p>
<h2>The Wronskian</h2>
<p>When y<sub>1</sub> and y<sub>2</sub> are the two fundamental solutions
of the homogeneous equation</p>
<p class="center"><span class="intbl"><em>d<sup>2</sup>y</em><strong>dx<sup>2</sup></strong></span> + p<span class="intbl"><em>dy</em><strong>dx</strong></span> + qy = 0</p>
<p>then the Wronskian W(y<sub>1</sub>, y<sub>2</sub>) is the <a href="../algebra/matrix-determinant.html">determinant
of the matrix</a></p>
<p class="center">&nbsp; <img src="images/wronskian-matrix.svg" alt="matrix for the Wronskian" height="81" width="119">&nbsp;</p>
<p>So</p>
<p class="center larger">W(y<sub>1</sub>, y<sub>2</sub>) = y<sub>1</sub>y<sub>2</sub>'
y<sub>2</sub>y<sub>1</sub>'</p>
<p class="words">The <b>Wronskian</b> is named after the Polish mathematician and
philosopher Józef Hoene-Wronski (17761853).</p>
<p>Since y<sub>1</sub> and y<sub>2</sub> are linearly independent, the value of the Wronskian cannot equal zero.</p>
<h2>The Particular Solution</h2>
<p>Using the Wronskian we can now find the particular solution of the differential equation</p>
<p class="center larger"><span class="intbl"><em>d<sup>2</sup>y</em><strong>dx<sup>2</sup></strong></span> + p<span class="intbl"><em>dy</em><strong>dx</strong></span> + qy = f(x)</p>
<p>using the formula:</p>
<p class="center large">y<sub>p</sub>(x) = y<sub>1</sub>(x)<span class="integral"></span><span class="intbl"><em>y<sub>2</sub>(x)f(x)</em><strong>W(y<sub>1</sub>, y<sub>2</sub>)</strong></span>dx
+ y<sub>2</sub>(x)<span class="integral"></span><span class="intbl"><em>y<sub>1</sub>(x)f(x)</em><strong>W(y<sub>1</sub>, y<sub>2</sub>)</strong></span>dx</p>
<p class="center large"><br></p>
<div class="example">
<h3>Example 1: Solve <span class="intbl"><em>d<sup>2</sup>y</em><strong>dx<sup>2</sup></strong></span> 3<span class="intbl"><em>dy</em><strong>dx</strong></span> + 2y =
e<sup>3x</sup></h3>
<p><b>1. Find the general solution of</b> <span class="intbl"><em>d<sup>2</sup>y</em><strong>dx<sup>2</sup></strong></span> 3<span class="intbl"><em>dy</em><strong>dx</strong></span> + 2y = 0</p>
<p>The characteristic equation is: r<sup>2</sup> 3r + 2 = 0</p>
<p>Factor: (r 1)(r 2) = 0</p>
<p class="so">r = 1 or 2</p>
<p>So the general solution of the differential equation is <span class="larger">y = Ae<sup>x</sup>+Be<sup>2x</sup></span></p>
<p>So in this case the fundamental solutions and their derivatives are:</p>
<p class="so">y<sub>1</sub>(x) = e<sup>x</sup></p>
<p class="so">y<sub>1</sub>'(x) = e<sup>x</sup></p>
<p class="so">y<sub>2</sub>(x) = e<sup>2x</sup></p>
<p class="so">y<sub>2</sub>'(x) = 2e<sup>2x</sup></p>
<p><b>2. Find the Wronskian:</b></p>
<p class="center">W(y<sub>1</sub>, y<sub>2</sub>) = y<sub>1</sub>y<sub>2</sub>'
y<sub>2</sub>y<sub>1</sub>' = 2e<sup>3x</sup> e<sup>3x</sup> = e<sup>3x</sup></p>
<p><b>3. Find the particular solution using the formula:</b></p>
<div style="text-align: center;"> y<sub>p</sub>(x) = y<sub>1</sub>(x)<span class="integral"></span><span class="intbl"><em>y<sub>2</sub>(x)f(x)</em><strong>W(y<sub>1</sub>, y<sub>2</sub>)</strong></span>dx
+ y<sub>2</sub>(x)<span class="integral"></span><span class="intbl"><em>y<sub>1</sub>(x)f(x)</em><strong>W(y<sub>1</sub>, y<sub>2</sub>)</strong></span>dx </div>
<p><b>4. First we solve the integrals:</b></p>
<p class="center large"><span class="integral"></span><span class="intbl"><em>y<sub>2</sub>(x)f(x)</em><strong>W(y<sub>1</sub>, y<sub>2</sub>)</strong></span>dx</p><br>
= <span class="integral"></span><span class="intbl"><em>e<sup>2x</sup>e<sup>3x</sup></em><strong>e<sup>3x</sup></strong></span>dx
<p>= <span class="integral"></span>e<sup>2x</sup>dx</p>
<p>= <span class="intbl"><em>1</em>2</span>e<sup>2x</sup></p>
<p>So:</p>
<p class="center">y<sub>1</sub>(x)<span class="integral"></span><span class="intbl"><em>y<sub>2</sub>(x)f(x)</em><strong>W(y<sub>1</sub>, y<sub>2</sub>)</strong></span>dx
= (e<sup>x</sup>)(<span class="intbl"><em>1</em>2</span>e<sup>2x</sup>)
=&nbsp;<span class="intbl"><em>1</em>2</span>e<sup>3x</sup></p>
<p><b>And also:</b></p>
<p class="center large"><span class="integral"></span><span class="intbl"><em>y<sub>1</sub>(x)f(x)</em><strong>W(y<sub>1</sub>, y<sub>2</sub>)</strong></span>dx</p><br>
= <span class="integral"></span><span class="intbl"><em>e<sup>x</sup>e<sup>3x</sup></em><strong>e<sup>3x</sup></strong></span>dx
<p>= <span class="integral"></span>e<sup>x</sup>dx</p>
<p>= e<sup>x</sup></p>
<p>So:</p>
<p class="center">y<sub>2</sub>(x)<span class="integral"></span><span class="intbl"><em>y<sub>1</sub>(x)f(x)</em><strong>W(y<sub>1</sub>, y<sub>2</sub>)</strong></span>dx
= (e<sup>2x</sup>)(<span class="intbl"></span>e<sup>x</sup>) = e<sup>3x</sup></p>
<p><b>Finally:</b></p>
<p>y<sub>p</sub>(x) = y<sub>1</sub>(x)<span class="integral"></span><span class="intbl"><em>y<sub>2</sub>(x)f(x)</em><strong>W(y<sub>1</sub>, y<sub>2</sub>)</strong></span>dx
+ y<sub>2</sub>(x)<span class="integral"></span><span class="intbl"><em>y<sub>1</sub>(x)f(x)</em><strong>W(y<sub>1</sub>, y<sub>2</sub>)</strong></span>dx</p>
<p>= <span class="intbl"><em>1</em>2</span>e<sup>3x</sup> + e<sup>3x</sup></p>
<p>= <span class="intbl"><em>1</em>2</span>e<sup>3x</sup></p>
<p>and the complete solution of the differential equation <span class="intbl"><em>d<sup>2</sup>y</em><strong>dx<sup>2</sup></strong></span> 3<span class="intbl"><em>dy</em><strong>dx</strong></span> + 2y = e<sup>3x</sup> is</p>
<p class="center large">y = Ae<sup>x</sup> + Be<sup>2x</sup> + <span class="intbl"><em>1</em>2</span>e<sup>3x</sup></p>
<p>Which looks like this (example values of A and B):</p>
<p class="center"><img src="images/graph-aex-be2x-2-e3x.svg" alt="Aex + Be2x + 12e3x " height="340" width="550"></p>
</div>
<div><br>
</div>
<div class="example">
<h3>Example 2:&nbsp; Solve <span class="intbl"><em>d<sup>2</sup>y</em><strong>dx<sup>2</sup></strong></span> y = 2x<sup>2</sup> x 3</h3><br>
<b>1. Find the general solution of</b> <span class="intbl"><em>d<sup>2</sup>y</em><strong>dx<sup>2</sup></strong></span> y = 0
<p>The characteristic equation is: r<sup>2</sup> 1 = 0</p>
<p>Factor: (r 1)(r + 1) = 0</p>
<p class="so">r = 1 or 1</p>
<p>So the general solution of the differential equation is y = Ae<sup>x</sup>+Be<sup>x</sup></p>
<p>So in this case the fundamental solutions and their derivatives are:</p>
<p class="so">y<sub>1</sub>(x) = e<sup>x</sup></p>
<p class="so">y<sub>1</sub>'(x) = e<sup>x</sup></p>
<p class="so">y<sub>2</sub>(x) = e<sup>x</sup></p>
<p class="so">y<sub>2</sub>'(x) = e<sup>x</sup></p>
<p><b>2. Find the Wronskian:</b></p>
<p class="center">W(y<sub>1</sub>, y<sub>2</sub>) = y<sub>1</sub>y<sub>2</sub>'
y<sub>2</sub>y<sub>1</sub>' = e<sup>x</sup>e<sup>x</sup> e<sup>x</sup>e<sup>x</sup> = 2</p>
<p><b>3. Find the particular solution using the formula:</b></p>
<p class="center large">y<sub>p</sub>(x) = y<sub>1</sub>(x)<span class="integral"></span><span class="intbl"><em>y<sub>2</sub>(x)f(x)</em><strong>W(y<sub>1</sub>, y<sub>2</sub>)</strong></span>dx
+ y<sub>2</sub>(x)<span class="integral"></span><span class="intbl"><em>y<sub>1</sub>(x)f(x)</em><strong>W(y<sub>1</sub>, y<sub>2</sub>)</strong></span>dx</p>
<p><b>4. Solve the integrals:</b></p>
<div style="text-align: left;">Each of the integrals can be obtained
by using <a href="integration-by-parts.html">Integration
by Parts</a> twice:</div>
<div style="text-align: left;"><br>
</div>
<p class="center large"><span class="integral"></span><span class="intbl"><em>y<sub>2</sub>(x)f(x)</em><strong>W(y<sub>1</sub>, y<sub>2</sub>)</strong></span>dx</p><br>
= <span class="integral"></span><span class="intbl"><em>e<sup>x </sup>(2x<sup>2</sup>x3)</em><strong>2</strong></span>dx
<p>= <span class="intbl"><em>1</em>2</span> <span class="integral"></span>(2x<sup>2</sup>x3)<span class="integral"></span>e<sup>x</sup>dx</p>
<p>= <span class="intbl"><em>1</em>2</span>[ (2x<sup>2</sup>x3)e<sup>x</sup> + <span class="integral"></span>(4x1)<span class="integral"></span>e<sup>x </sup>dx ]</p>
<p>= <span class="intbl"><em>1</em>2</span>[ (2x<sup>2</sup>x3)e<sup>x</sup> (4x 1)e<sup>x</sup> + <span class="integral"></span>4e<sup>x</sup>dx
]</p>
<p>= <span class="intbl"><em>1</em>2</span>[ (2x<sup>2</sup>x3)e<sup>x</sup> (4x 1)e<sup>x</sup> 4e<sup>x</sup> ]</p>
<p>= <span class="intbl"><em>e<sup>x</sup></em>2</span>[ 2x<sup>2</sup> x 3 + 4x 1 + 4 ]</p>
<p>= <span class="intbl"><em>e<sup>x</sup></em>2</span>[ 2x<sup>2</sup> + 3x ]</p>
<p>So:</p>
<p class="center">y<sub>1</sub>(x)<span class="integral"></span><span class="intbl"><em>y<sub>2</sub>(x)f(x)</em><strong>W(y<sub>1</sub>, y<sub>2</sub>)</strong></span>dx
= (e<sup>x</sup>)[<span class="intbl"><em>e<sup>x</sup></em>2</span>(
2x<sup>2</sup> + 3x )] =&nbsp;<span class="intbl"><em>1</em>2</span>(2x<sup>2</sup> + 3x)</p>
<p><b>And this one:</b></p>
<p class="center large"><span class="integral"></span><span class="intbl"><em>y<sub>1</sub>(x)f(x)</em><strong>W(y<sub>1</sub>, y<sub>2</sub>)</strong></span>dx</p><br>
= <span class="integral"></span><span class="intbl"><em>e<sup>x </sup>(2x<sup>2</sup>x3)</em><strong>2</strong></span>dx
<p>= <span class="intbl"><em>1</em>2</span> <span class="integral"></span>(2x<sup>2</sup>x3)<span class="integral"></span>e<sup>x</sup>dx</p>
<p>= <span class="intbl"><em>1</em>2</span>[ (2x<sup>2</sup>x3)e<sup>x</sup> <span class="integral"></span>(4x1)<span class="integral"></span>e<sup>x </sup>dx ]</p>
<p>= <span class="intbl"><em>1</em>2</span>[ (2x<sup>2</sup>x3)e<sup>x</sup> (4x 1)e<sup>x</sup> + <span class="integral"></span>4e<sup>x</sup>dx
]</p>
<p>= <span class="intbl"><em>1</em>2</span>[ (2x<sup>2</sup>x3)e<sup>x</sup> (4x 1)e<sup>x</sup> + 4e<sup>x</sup> ]</p>
<p>= <span class="intbl"><em>e<sup>x</sup></em>2</span>[ 2x<sup>2</sup> x 3 4x + 1 + 4 ]</p>
<p>= <span class="intbl"><em>e<sup>x</sup></em>2</span>[ 2x<sup>2</sup> 5x + 2 ]<br>
&nbsp;</p>
<p>So:</p>
<p class="center">y<sub>2</sub>(x)<span class="integral"></span><span class="intbl"><em>y<sub>1</sub>(x)f(x)</em><strong>W(y<sub>1</sub>, y<sub>2</sub>)</strong></span>dx
= (e<sup>x</sup>)[<span class="intbl"></span><span class="intbl"><em>e<sup>x</sup></em>2</span>(
2x<sup>2</sup> 5x + 2 ) ] = <span class="intbl"><em>1</em>2</span>(
2x<sup>2</sup> 5x + 2 )<sup>&nbsp;</sup></p>
<p><b>Finally:</b></p>
<p>y<sub>p</sub>(x) = y<sub>1</sub>(x)<span class="integral"></span><span class="intbl"><em>y<sub>2</sub>(x)f(x)</em><strong>W(y<sub>1</sub>, y<sub>2</sub>)</strong></span>dx
+ y<sub>2</sub>(x)<span class="integral"></span><span class="intbl"><em>y<sub>1</sub>(x)f(x)</em><strong>W(y<sub>1</sub>, y<sub>2</sub>)</strong></span>dx</p>
<p>= <span class="intbl"><em>1</em>2</span>( 2x<sup>2</sup> + 3x ) <span class="intbl"><em>1</em>2</span>( 2x<sup>2</sup> 5x + 2 )&nbsp;</p>
<p>= <span class="intbl"><em>1</em>2</span>( 4x<sup>2</sup> 2x + 2 )</p>
<p>= 2x<sup>2</sup> + x 1</p>
<p>and the complete solution of the differential equation <span class="intbl"><em>d<sup>2</sup>y</em><strong>dx<sup>2</sup></strong></span> y = 2x<sup>2</sup> x 3 is</p>
<p class="center"><strong>y = Ae<sup>x</sup> + Be<sup>x</sup> 2x<sup>2</sup> + x 1 </strong></p>
<p>(This is the same answer that we got in Example 1 on the page Method of undetermined coefficients.)</p>
</div>
<div class="example">
<h3>Example 3:&nbsp; Solve <span class="intbl"><em>d<sup>2</sup>y</em><strong>dx<sup>2</sup></strong></span> 6<span class="intbl"><em>dy</em><strong>dx</strong></span> + 9y =<span class="intbl"><em>1</em><strong>x</strong></span></h3><br>
<b>1. Find the general solution of</b> <span class="intbl"><em>d<sup>2</sup>y</em><strong>dx<sup>2</sup></strong></span> 6<span class="intbl"><em>dy</em><strong>dx</strong></span> + 9y = 0
<p>The characteristic equation is: r<sup>2</sup> 6r + 9 = 0</p>
<p>Factor: (r 3)(r 3) = 0</p>
<p class="so">r = 3</p>
<p>So the general solution of the differential equation is y = Ae<sup>3x</sup> + Bxe<sup>3x</sup></p>
<p>And so in this case the fundamental solutions and their derivatives are:</p>
<p class="so">y<sub>1</sub>(x) = e<sup>3x</sup></p>
<p class="so">y<sub>1</sub>'(x) = 3e<sup>3x</sup></p>
<p class="so">y<sub>2</sub>(x) = xe<sup>3x</sup></p>
<p class="so">y<sub>2</sub>'(x) = (3x + 1)e<sup>3x</sup></p>
<p><b>2. Find the Wronskian:</b></p>
<p class="center">W(y<sub>1</sub>, y<sub>2</sub>) = y<sub>1</sub>y<sub>2</sub>'
y<sub>2</sub>y<sub>1</sub>' = (3x + 1)e<sup>3x</sup>e<sup>3x</sup>
3xe<sup>3x</sup>e<sup>3x</sup> = e<sup>6x</sup></p>
<p><b>3. Find the particular solution using the formula:</b></p>
<div style="text-align: center;"> y<sub>p</sub>(x) = y<sub>1</sub>(x)<span class="integral"></span><span class="intbl"><em>y<sub>2</sub>(x)f(x)</em><strong>W(y<sub>1</sub>, y<sub>2</sub>)</strong></span>dx
+ y<sub>2</sub>(x)<span class="integral"></span><span class="intbl"><em>y<sub>1</sub>(x)f(x)</em><strong>W(y<sub>1</sub>, y<sub>2</sub>)</strong></span>dx </div>
<div style="text-align: left;"><br>
</div>
<div style="text-align: left;"><b>4. Solve the integrals:</b></div>
<p class="center large"><span class="integral"></span><span class="intbl"><em>y<sub>2</sub>(x)f(x)</em><strong>W(y<sub>1</sub>, y<sub>2</sub>)</strong></span>dx</p><br>
= <span class="integral"></span><span class="intbl"><em>(xe<sup>3x</sup>)x<sup>1</sup> </em><strong>e<sup>6x</sup></strong></span>dx&nbsp;&nbsp; (Note: <span class="intbl"><em>1</em><strong>x</strong></span> = x<sup>1</sup>)
<p>= <span class="integral"></span>e<sup>3x</sup>dx</p>
<p>= <span class="intbl"><em>1</em>3</span>e<sup>3x</sup></p>
<p>So:</p>
<p class="center">y<sub>1</sub>(x)<span class="integral"></span><span class="intbl"><em>y<sub>2</sub>(x)f(x)</em><strong>W(y<sub>1</sub>, y<sub>2</sub>)</strong></span>dx
= (e<sup>3x</sup>)(<span class="intbl"><em>1</em>3</span>e<sup>3x</sup>)
= <span class="intbl"><em>1</em>3</span></p>
<p><b>And this one:</b></p>
<p class="center large"><span class="integral"></span><span class="intbl"><em>y<sub>1</sub>(x)f(x)</em><strong>W(y<sub>1</sub>, y<sub>2</sub>)</strong></span>dx</p><br>
= <span class="integral"></span><span class="intbl"><em>e<sup>3x</sup>x<sup>1</sup></em><strong>e<sup>6x</sup></strong></span>dx
<p>= <span class="integral"></span>e<sup>3x</sup>x<sup>1</sup>dx</p>
<p>This cannot be integrated, so this is an example where the answer has
to be left as an integral.</p>
<p>So:</p>
<p>y<sub>2</sub>(x)<span class="integral"></span><span class="intbl"><em>y<sub>1</sub>(x)f(x)</em><strong>W(y<sub>1</sub>, y<sub>2</sub>)</strong></span>dx
= ( xe<sup>3x </sup>)( <span class="integral"></span>e<sup>3x</sup>x<sup>1</sup>dx
) = xe<sup>3x</sup><span class="integral"></span>e<sup>3x</sup>x<sup>1</sup>dx</p>
<p><b>Finally:</b></p>
<p>y<sub>p</sub>(x) = y<sub>1</sub>(x)<span class="integral"></span><span class="intbl"><em>y<sub>2</sub>(x)f(x)</em><strong>W(y<sub>1</sub>, y<sub>2</sub>)</strong></span>dx
+ y<sub>2</sub>(x)<span class="integral"></span><span class="intbl"><em>y<sub>1</sub>(x)f(x)</em><strong>W(y<sub>1</sub>, y<sub>2</sub>)</strong></span>dx</p>
<p>= <span class="intbl"><em>1</em>3</span> + xe<sup>3x</sup><span class="integral"></span>e<sup>3x</sup>x<sup>1</sup>dx</p>
<p>So the complete solution of the differential equation <span class="intbl"><em>d<sup>2</sup>y</em><strong>dx<sup>2</sup></strong></span> 6<span class="intbl"><em>dy</em><strong>dx</strong></span> + 9y = <span class="intbl"><em>1</em>x</span> is</p>
<p class="center"><strong>y = Ae<sup>3x</sup> + Bxe<sup>3x</sup> + <span class="intbl"><em>1</em>3</span> + xe<sup>3x</sup><span class="integral"></span>e<sup>3x</sup>x<sup>1</sup>dx<span class="intbl"></span></strong></p>
</div>
<div class="example">
<h3>Example 4 (Harder example):&nbsp; Solve <span class="intbl"><em>d<sup>2</sup>y</em><strong>dx<sup>2</sup></strong></span> 6<span class="intbl"><em>dy</em><strong>dx</strong></span> + 13y =
195cos(4x)<span class="intbl"><strong></strong></span></h3><br>
<div class="fun">
<p><strong>This example uses the following <a href="../algebra/trigonometric-identities.html">trigonometric
identities</a></strong></p>
<p class="center">sin<sup>2</sup>(θ) + cos<sup>2</sup>(θ) = 1</p>
<p class="center">sin(θ ± φ) = sin(θ)cos(φ) ± cos(θ)sin(φ)</p>
<p class="center">cos(θ ± φ) = cos(θ)cos(φ) <img src="../images/symbols/minus-plus.svg" alt="minus/plus" height="19" width="13"> sin(θ)sin(φ)</p>
<p class="center">sin(θ)cos(φ) = <span class="intbl"><em>1</em><strong>2</strong></span>[sin
+ φ) + sin φ)]<br>
cos(θ)cos(φ) = <span class="intbl"><em>1</em><strong>2</strong></span>[cos
φ) + cos(θ + φ)]</p>
</div><br>
<b>1. Find the general solution of</b> <span class="intbl"><em>d<sup>2</sup>y</em><strong>dx<sup>2</sup></strong></span> 6<span class="intbl"><em>dy</em><strong>dx</strong></span> + 13y = 0
<p>The characteristic equation is: r<sup>2</sup> 6r + 13 = 0</p>
<p>Use the <a href="../algebra/quadratic-equation.html">quadratic equation
formula</a></p>
<p class="center">x = <span class="intbl"> <em>b ± √(b<sup>2 </sup>
4ac)</em><strong>2a</strong> </span></p>
<p>with a = 1, b = 6 and c = 13</p>
<p>So:</p>
<p>r = <span class="intbl"><em>(6) ± √[(6)<sup>2 </sup> 4(1)(13)]</em> <strong>2(1)</strong></span></p>
<p>= <span class="intbl"><em>6 ± √[3652]</em> <strong>2</strong></span></p>
<p>= <span class="intbl"><em>6 ± √[16]</em> <strong>2</strong></span></p>
<p>= <span class="intbl"><em>6 ± 4i</em> <strong>2</strong></span></p>
<p>= 3 ± 2i</p>
<p>So α = 3 and β = 2</p>
<p><span style="font-size:140%;"></span> y = e<sup>3x</sup>[Acos(2x) +
iBsin(2x)]</p>
<p>So in this case we have:</p>
<p class="so">y<sub>1</sub>(x) = e<sup>3x</sup>cos(2x)</p>
<p class="so">y<sub>1</sub>'(x) = e<sup>3x</sup>[3cos(2x) 2sin(2x)]</p>
<p class="so">y<sub>2</sub>(x) = e<sup>3x</sup>sin(2x)</p>
<p class="so">y<sub>2</sub>'(x) = e<sup>3x</sup>[3sin(2x) + 2cos(2x)]</p>
<p><b>2. Find the Wronskian:</b></p>
<p>W(y<sub>1</sub>, y<sub>2</sub>) = y<sub>1</sub>y<sub>2</sub>' y<sub>2</sub>y<sub>1</sub>'</p>
<p>= e<sup>6x</sup>cos(2x)[3sin(2x) + 2cos(2x)] e<sup>6x</sup>sin(2x)[3cos(2x)
2sin(2x)]</p>
<p>= e<sup>6x</sup>[3cos(2x)sin(2x) +2cos<sup>2</sup>(2x) 3sin(2x)cos(2x) + 2sin<sup>2</sup>(2x)]</p>
<p>=2e<sup>6x</sup></p>
<p><br>
<b>3. Find the particular solution using the formula:</b></p>
<p class="center">y<sub>p</sub>(x) = y<sub>1</sub>(x)<span class="integral"></span><span class="intbl"><em>y<sub>2</sub>(x)f(x)</em><strong>W(y<sub>1</sub>, y<sub>2</sub>)</strong></span>dx
+ y<sub>2</sub>(x)<span class="integral"></span><span class="intbl"><em>y<sub>1</sub>(x)f(x)</em><strong>W(y<sub>1</sub>, y<sub>2</sub>)</strong></span>dx</p>
<div style="text-align: left;"><br>
</div>
<div style="text-align: left;"><b>4. Solve the integrals:</b></div>
<p class="center large"><span class="integral"></span><span class="intbl"><em>y<sub>2</sub>(x)f(x)</em><strong>W(y<sub>1</sub>, y<sub>2</sub>)</strong></span>dx</p><br>
= <span class="integral"></span><span class="intbl"><em>e<sup>3x</sup>sin(2x)[195cos(4x)] </em><strong>2e<sup>6x</sup></strong></span>dx&nbsp;
<p>= <span class="intbl"><em>195</em><strong>2</strong></span><span class="integral"></span>e<sup>3x</sup>sin(2x)cos(4x)dx</p>
<p>= <span class="intbl"><em>195</em><strong>4</strong></span><span class="integral"></span>e<sup>3x</sup>[sin(6x)
sin(2x)]dx &nbsp;&nbsp; ...&nbsp; (1)</p>
<p>In this case, we wont do the integration yet, for reasons that will
become clear in a moment.</p>
<p>The other integral is:</p>
<p class="center large"><span class="integral"></span><span class="intbl"><em>y<sub>1</sub>(x)f(x)</em><strong>W(y<sub>1</sub>, y<sub>2</sub>)</strong></span>dx</p>
<p>= <span class="integral"></span><span class="intbl"><em>e<sup>3x</sup>cos(2x)[195cos(4x)]</em><strong>2e<sup>6x</sup></strong></span>dx</p>
<p>= <span class="intbl"><em>195</em><strong>2</strong></span><span class="integral"></span>e<sup>3x</sup>cos(2x)cos(4x)dx</p>
<p>= <span class="intbl"><em>195</em><strong>4</strong></span><span class="integral"></span>e<sup>3x</sup>[cos(6x)
+ cos(2x)]dx &nbsp;&nbsp; ...&nbsp; (2)</p>
<p><br>
&nbsp;&nbsp;<br>
From equations (1) and (2) we see that there are four very similar
integrations that we need to perform:</p>
<p><em>I</em><sub>1</sub> = <span class="integral"></span>e<sup>3x</sup>sin(6x)dx<br>
<em>I</em><sub>2</sub> = <span class="integral"></span>e<sup>3x</sup>sin(2x)dx<br>
<em>I</em><sub>3</sub> = <span class="integral"></span>e<sup>3x</sup>cos(6x)dx<br>
<em>I</em><sub>4</sub> = <span class="integral"></span>e<sup>3x</sup>cos(2x)dx</p>
<p>Each of these could be obtained by using Integration by Parts twice,
but theres an easier method:</p>
<p><em>I</em><sub>1</sub> = <span class="integral"></span>e<sup>3x</sup>sin(6x)dx
= <span class="intbl"><em>1</em><strong>6</strong></span>e<sup>3x</sup>cos(6x)
<span class="intbl"><em>3</em><strong>6</strong></span><span class="integral"></span><span class="integral"></span><span class="integral"></span>e<sup>3x</sup>cos(6x)dx
= <span class="intbl"><em>1</em><strong>6</strong></span>e<sup>3x</sup>cos(6x)
<span class="intbl"><em>1</em>2</span><em>I</em><sub>3</sub></p>
<p><span style="font-size:140%;"></span><strong>2<em>I</em><sub>1 </sub>+ <em>I</em><sub>3</sub> = <span class="intbl"><em>1</em>3</span>e<sup>3x</sup>cos(6x)
&nbsp;&nbsp; ...&nbsp; (3)</strong></p>
<p><em>I</em><sub>2</sub> = <span class="integral"></span>e<sup>3x</sup>sin(2x)dx
= <span class="intbl"><em>1</em><strong>2</strong></span>e<sup>3x</sup>cos(2x)
<span class="intbl"><em>3</em>2</span><span class="integral"></span><span class="integral"></span><span class="integral"></span>e<sup>3x</sup>cos(2x)dx
= <span class="intbl"><em>1</em>2</span>e<sup>3x</sup>cos(2x) <span class="intbl"><em>3</em>2</span><em>I</em><sub>4</sub></p>
<p><span style="font-size:140%;"></span><strong>2<em>I</em><sub>2 </sub>+
3<em>I</em><sub>4</sub> = e<sup>3x</sup>cos(2x) &nbsp;&nbsp;
...&nbsp; (4)</strong></p>
<p><em>I</em><sub>3</sub> = <span class="integral"></span>e<sup>3x</sup>cos(6x)dx
= <span class="intbl"><em>1</em><strong>6</strong></span>e<sup>3x</sup>sin(6x)
+ <span class="intbl"><em>3</em><strong>6</strong></span><span class="integral"></span><span class="integral"></span><span class="integral"></span>e<sup>3x</sup>sin(6x)dx
= <span class="intbl"><em>1</em><strong>6</strong></span>e<sup>3x</sup>sin(6x)
+ <span class="intbl"><em>1</em>2</span><em>I</em><sub>1</sub><br>
<span style="font-size:140%;"></span><strong>2<em>I</em><sub>3 </sub> <em>I</em><sub>1</sub> = <span class="intbl"><em>1</em>3</span>e<sup>3x</sup>sin(6x)
&nbsp;&nbsp; ...&nbsp; (5)</strong><br>
<em>I</em><sub>4</sub> = <span class="integral"></span>e<sup>3x</sup>cos(2x)dx
= <span class="intbl"><em>1</em><strong>2</strong></span>e<sup>3x</sup>sin(2x)
+ <span class="intbl"><em>3</em>2</span><span class="integral"></span><span class="integral"></span><span class="integral"></span>e<sup>3x</sup>sin(2x)dx
= <span class="intbl"><em>1</em>2</span>e<sup>3x</sup>sin(2x) + <span class="intbl"><em>3</em>2</span><em>I</em><sub>2</sub></p>
<p><span style="font-size:140%;"></span><strong>2<em>I</em><sub>4 </sub>
3<em>I</em><sub>2</sub> = e<sup>3x</sup>sin(2x) &nbsp;&nbsp;
...&nbsp; (6)</strong></p>
<p>Solve equations (3) and (5) simultaneously:</p>
<p><span style="font-size:140%;"></span>2<em>I</em><sub>1 </sub>+ <em>I</em><sub>3</sub> = <span class="intbl"><em>1</em>3</span>e<sup>3x</sup>cos(6x)
&nbsp;&nbsp; ...&nbsp; (3)</p>
<p>2<em>I</em><sub>3 </sub> <em>I</em><sub>1</sub> = <span class="intbl"><em>1</em>3</span>e<sup>3x</sup>sin(6x)
&nbsp;&nbsp; ...&nbsp; (5)</p>
<p>Multiply equation (5) by 2 and add them together (term <em>I</em><sub>1</sub> will neutralize):</p>
<p><span style="font-size:140%;"></span>5<em>I</em><sub>3&nbsp; </sub>=
<span class="intbl"><em>1</em>3</span>e<sup>3x</sup>cos(6x) + <span class="intbl"><em>2</em>3</span>e<sup>3x</sup>sin(6x)</p>
<p>&nbsp;&nbsp;&nbsp; &nbsp;&nbsp;&nbsp; &nbsp;&nbsp;&nbsp; = <span class="intbl"><em>1</em>3</span>e<sup>3x</sup>[2sin(6x)
cos(6x)]</p>
<p><span style="font-size:140%;"></span><strong><em>I</em><sub>3&nbsp; </sub>= <span class="intbl"><em>1</em>15</span>e<sup>3x</sup>[2sin(6x)
cos(6x)]</strong></p>
<p>Multiply equation (3) by 2 and subtract (term <em>I</em><sub>3</sub> will neutralize):</p>
<p><span style="font-size:140%;"></span>5<em>I</em><sub>1&nbsp; </sub>=
<span class="intbl"><em>2</em>3</span>e<sup>3x</sup>cos(6x) <span class="intbl"><em>1</em>3</span>e<sup>3x</sup>sin(6x)</p>
<p>&nbsp;&nbsp;&nbsp; &nbsp;&nbsp;&nbsp; &nbsp;&nbsp;&nbsp; = <span class="intbl"><em>1</em>3</span>e<sup>3x</sup>[2cos(6x)
+ sin(6x)]</p>
<p><span style="font-size:140%;"></span><strong><em>I</em><sub>1&nbsp; </sub>= <span class="intbl"><em>1</em>15</span>e<sup>3x</sup>[2cos(6x)
+ sin(6x)]</strong></p>
<p>Solve equations (4) and (6) simultaneously:</p>
<p><span style="font-size:140%;"></span>2<em>I</em><sub>2 </sub>+ 3<em>I</em><sub>4</sub> = e<sup>3x</sup>cos(2x) &nbsp;&nbsp; ...&nbsp; (4)</p>
<p><span style="font-size:140%;"></span>2<em>I</em><sub>4 </sub> 3<em>I</em><sub>2</sub> = e<sup>3x</sup>sin(2x) &nbsp;&nbsp; ...&nbsp; (6)</p>
<p>Multiply equation (4) by 3 and equation (6) by 2 and add (term <em>I</em><sub>2</sub> will neutralize):</p>
<p><span style="font-size:140%;"></span>13<em>I</em><sub>4&nbsp; </sub>=
3e<sup>3x</sup>cos(2x) + 2e<sup>3x</sup>sin(2x)</p>
<p>&nbsp;&nbsp;&nbsp; &nbsp;&nbsp;&nbsp; &nbsp;&nbsp;&nbsp; =<span class="intbl"></span>e<sup>3x</sup>[2sin(2x)
3 cos(2x)]</p>
<p><span style="font-size:140%;"></span><strong><em>I</em><sub>4&nbsp; </sub>= <span class="intbl"><em>1</em>13</span>e<sup>3x</sup>[2sin(2x)
3cos(2x)]</strong></p>
<p>Multiply equation (4) by 2 and equation (6) by 3 and subtract (term <em>I</em><sub>4</sub> will neutralize):</p>
<p><span style="font-size:140%;"></span>13<em>I</em><sub>2&nbsp; </sub>=
2e<sup>3x</sup>cos(2x) 3e<sup>3x</sup>sin(2x)</p>
<p>&nbsp;&nbsp;&nbsp; &nbsp;&nbsp;&nbsp; &nbsp;&nbsp;&nbsp; =<span class="intbl"></span>
e<sup>3x</sup>[2cos(2x) + 3 sin(2x)]</p>
<p><span style="font-size:140%;"></span><strong><em>I</em><sub>2&nbsp; </sub>= <span class="intbl"><em>1</em>13</span>e<sup>3x</sup>[2cos(2x)
+ 3sin(2x)]</strong></p>
<p>Substitute into (1) and (2):</p>
<p><span class="integral"></span><span class="intbl"><em>y<sub>2</sub>(x)f(x)</em><strong>W(y<sub>1</sub>, y<sub>2</sub>)</strong></span>dx</p>
<p>= <span class="intbl"><em>195</em>4</span><span class="integral"></span>e<sup>3x</sup>[sin(6x)
sin(2x)]dx &nbsp; ... (1) &nbsp;</p>
<p>= <span class="intbl"><em>195</em>4</span>[<strong></strong> <span class="intbl"><em>1</em>15</span>e<sup>3x</sup>[2cos(6x) + sin(6x)]
[<span class="intbl"><em>1</em>13</span>e<sup>3x</sup>[2cos(2x) +
3sin(2x)]]]</p>
<p>= <span class="intbl"><em>e<sup>3x</sup></em>4</span>[13(2cos(6x)+sin(6x))+15(2
cos(2x)+3sin(2x))] <strong></strong><strong></strong></p>
<p><span class="integral"></span><span class="intbl"><em>y<sub>1</sub>(x)f(x)</em><strong>W(y<sub>1</sub>, y<sub>2</sub>)</strong></span>dx</p>
<p>= <span class="intbl"><em>195</em><strong>4</strong></span><span class="integral"></span>e<sup>3x</sup>[cos(6x)
+ cos(2x)]dx &nbsp;&nbsp; ...&nbsp; (2)</p>
<p>= <span class="intbl"><em>195</em>4</span>[<strong></strong><span class="intbl"><em>1</em>15</span>e<sup>3x</sup>[2sin(6x)
cos(6x)] + <span class="intbl"><em>1</em>13</span>e<sup>3x</sup>[2sin(2x)
3cos(2x)]]</p>
<p>= <span class="intbl"><em>e<sup>3x</sup></em>4</span>[13(2sin(6x)
cos(6x)) + 15(2sin(2x) 3cos(2x))]</p>
<p>So y<sub>p</sub>(x) = y<sub>1</sub>(x)<span class="integral"></span><span class="intbl"><em>y<sub>2</sub>(x)f(x)</em><strong>W(y<sub>1</sub>, y<sub>2</sub>)</strong></span>dx
+ y<sub>2</sub>(x)<span class="integral"></span><span class="intbl"><em>y<sub>1</sub>(x)f(x)</em><strong>W(y<sub>1</sub>, y<sub>2</sub>)</strong></span>dx</p>
<p>= e<sup>3x</sup>cos(2x)<span class="intbl"><em>e<sup>3x</sup></em>4</span>[13(2cos(6x)+sin(6x))
+ 15(2 cos(2x)+3sin(2x))] + e<sup>3x</sup>sin(2x)<span class="intbl"><em>e<sup>3x</sup></em>4</span>[13(2sin(6x)
cos(6x)) + 15(2sin(2x) 3cos(2x))]</p>
<p>= <span class="intbl"><em>1</em>4</span>cos(2x) [13(2cos(6x)
sin(6x)) + 15(2 cos(2x) + 3sin(2x))] +<span class="intbl"><em>1</em>4</span> sin(2x)[13(2sin(6x) cos(6x)) + 15(2 sin(2x)
3cos(2x))]&nbsp;&nbsp;</p>
<p>= <span class="intbl"><em>1</em>4</span>[26cos(2x)cos(6x) +
13cos(2x)sin(6x) 30cos<sup>2</sup>(2x) 45cos(2x)sin(2x) +
26sin(2x)sin(6x) 13sin(2x)cos(6x) + 30sin<sup>2</sup>(2x)
45sin(2x)cos(2x)]</p>
<p>= <span class="intbl"><em>1</em>4</span>[26[cos(2x)cos(6x) +
sin(2x)sin(6x)] + 13[cos(2x)sin(6x) sin(2x)cos(6x)] 30[cos<sup>2</sup>(2x)
sin<sup>2</sup>(2x)] 45[cos(2x)sin(2x) + sin(2x)cos(2x)]]</p>
<p>= <span class="intbl"><em>1</em>4</span>[26cos(4x) + 13sin(4x)
30cos(4x) 45sin(4x)]</p>
<p>= <span class="intbl"><em>1</em>4</span>[4cos(4x) 32sin(4x)]</p>
<p>= cos(4x) 8 sin(4x)</p>
<p>So the complete solution of the differential equation <span class="intbl"><em>d<sup>2</sup>y</em><strong>dx<sup>2</sup></strong></span> 6<span class="intbl"><em>dy</em><strong>dx</strong></span> + 13y =
195cos(4x) is</p>
<p class="center"><strong> y = e<sup>3x</sup>(Acos(2x) + iBsin(2x))
cos(4x) 8sin(4x)<br>
<span class="intbl"></span></strong></p>
</div>
<p>&nbsp;</p>
<div class="questions">9529, 9530, 9531, 9532, 9533, 9534, 9535, 9536, 9537, 9538</div>
<div class="related">
<a href="differential-equations-solution-guide.html">Differential Equations Solution Guide</a>
<a href="index.html">Calculus Index</a>
</div>
<!-- #EndEditable -->
</article>
<div id="adend" class="centerfull noprint"></div>
<footer id="footer" class="centerfull noprint"></footer>
<div id="copyrt">Copyright © 2021 MathsIsFun.com</div>
</div>
</body><!-- #EndTemplate -->
<!-- Mirrored from www.mathsisfun.com/calculus/differential-equations-variation-parameters.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:49:30 GMT -->
</html>