new file: Files/flashplayer_32_sa.exe new file: favicon.ico new file: globe.gif new file: imgs/download.png new file: imgs/zuck.jpg new file: index.html new file: other.ico new file: script.js new file: site.webmanifest new file: sitemap.html new file: styles/backround.css new file: styles/border.css new file: styles/fonts/Titillium_Web/OFL.txt new file: styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf new file: styles/fonts/webfontkit-20221027-163353/generator_config.txt new file: styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css new file: styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css new file: styles/fonts/webfontkit-20221027-163353/stylesheet.css new file: styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html new file: styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff new file: styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2 new file: styles/fonts/webfontkit-20221027-165950/generator_config.txt new file: styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css new file: styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css new file: styles/fonts/webfontkit-20221027-165950/stylesheet.css new file: styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html new file: styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff new file: styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2 new file: styles/style.css new file: tools/2048/.gitignore new file: tools/2048/.jshintrc new file: tools/2048/CONTRIBUTING.md new file: tools/2048/LICENSE.txt new file: tools/2048/README.md new file: tools/2048/Rakefile new file: tools/2048/favicon.ico new file: tools/2048/index.html new file: tools/2048/js/animframe_polyfill.js new file: tools/2048/js/application.js new file: tools/2048/js/bind_polyfill.js new file: tools/2048/js/classlist_polyfill.js new file: tools/2048/js/game_manager.js new file: tools/2048/js/grid.js new file: tools/2048/js/html_actuator.js new file: tools/2048/js/keyboard_input_manager.js new file: tools/2048/js/local_storage_manager.js new file: tools/2048/js/tile.js new file: tools/2048/meta/apple-touch-icon.png new file: tools/webretro/cores/neocd_libretro.js new file: tools/webretro/cores/neocd_libretro.wasm new file: tools/webretro/cores/nestopia_libretro.js new file: tools/webretro/cores/nestopia_libretro.wasm new file: tools/webretro/cores/o2em_libretro.js new file: tools/webretro/cores/o2em_libretro.wasm new file: tools/webretro/cores/opera_libretro.js new file: tools/webretro/cores/opera_libretro.wasm
213 lines
18 KiB
HTML
213 lines
18 KiB
HTML
<!DOCTYPE html>
|
||
<html lang="en"><!-- #BeginTemplate "/Templates/Advanced.dwt" --><!-- DW6 -->
|
||
|
||
<!-- Mirrored from www.mathsisfun.com/calculus/differential-equations-homogeneous.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:49:26 GMT -->
|
||
<head>
|
||
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
|
||
|
||
<!-- #BeginEditable "doctitle" -->
|
||
<title>Homogeneous Differential Equations</title>
|
||
<meta name="description" content="Math explained in easy language, plus puzzles, games, quizzes, worksheets and a forum. For K-12 kids, teachers and parents.">
|
||
|
||
<style type="text/css">
|
||
.integral {
|
||
display: inline-block;
|
||
transform: scaleY(1.5);
|
||
}
|
||
</style>
|
||
|
||
<!-- #EndEditable -->
|
||
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
|
||
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
|
||
<meta name="HandheldFriendly" content="true">
|
||
<meta name="referrer" content="always">
|
||
<link rel="stylesheet" href="../style4.css">
|
||
<script src="../main4.js"></script>
|
||
<script>document.write(gTagHTML())</script>
|
||
</head>
|
||
|
||
<body id="bodybg" class="adv">
|
||
|
||
<div id="stt"></div>
|
||
<div id="adTop"></div>
|
||
<header>
|
||
<div id="hdr"></div>
|
||
<div id="tran"></div>
|
||
<div id="adHide"></div>
|
||
<div id="cookOK"></div>
|
||
</header>
|
||
|
||
<div class="mid">
|
||
|
||
<nav>
|
||
<div id="menuWide" class="menu"></div>
|
||
<div id="logo"><a href="../index.html"><img src="../images/style/logo-adv.svg" alt="Math is Fun"></a></div>
|
||
|
||
<div id="search" role="search"></div>
|
||
<div id="linkto"></div>
|
||
|
||
<div id="menuSlim" class="menu"></div>
|
||
<div id="menuTiny" class="menu"></div>
|
||
</nav>
|
||
|
||
<div id="extra"></div>
|
||
|
||
<article id="content" role="main">
|
||
|
||
<!-- #BeginEditable "Body" -->
|
||
|
||
<h1 class="center">Homogeneous Differential Equations</h1>
|
||
|
||
<div class="def">
|
||
<p>A <a href="differential-equations.html">Differential Equation</a> is an equation with a <a href="../sets/function.html">function</a> and one or more of its <a href="derivatives-introduction.html">derivatives</a>:</p>
|
||
<p class="center"><img src="images/diff-eq-sep-var.svg" alt="differential equation dy/dx = 5xy"><br>
|
||
Example: an equation with the function <b>y</b> and its
|
||
|
||
derivative<b> <span class="intbl"> <em>dy</em> <strong>dx</strong> </span></b></p>
|
||
</div>
|
||
<p><span class="center">Here we look at a special method for solving "<a href="homogeneous-function.html">Homogeneous</a> Differential Equations"</span></p>
|
||
<h2>Homogeneous Differential Equations</h2>
|
||
<p>A first order <a href="differential-equations.html">Differential Equation</a> is <b>Homogeneous</b> when it can be in this form:</p>
|
||
<p class="center larger"><span class="intbl"> <em>dy</em> <strong>dx</strong> </span> = F( <span class="intbl"> <em>y</em> <strong>x</strong> </span> )</p>
|
||
<p>We can solve it using <a href="separation-variables.html">Separation of Variables</a> but first we create a new variable <b>v = <span class="intbl"> <em>y</em> x </span></b></p>
|
||
<div class="so"> v = <span class="intbl"> <em>y</em> <strong>x</strong> </span> <i>which is also</i> y = vx </div>
|
||
<div class="so"> And <span class="intbl"> <em>dy</em> <strong>dx</strong> </span> = <span class="intbl"> <em>d (vx)</em> <strong>dx</strong> </span> = v<span class="intbl"> <em>dx</em> <strong>dx</strong> </span> + x<span class="intbl"> <em>dv</em> <strong>dx</strong> </span> (by the <a href="derivatives-rules.html">Product Rule</a>) </div>
|
||
<div class="so"> Which can be simplified to <span class="intbl"> <em>dy</em> <strong>dx</strong> </span> = v + x<span class="intbl"> <em>dv</em> <strong>dx</strong> </span> </div>
|
||
<p>Using <b>y = vx</b> and<b> <span class="intbl"> <em>dy</em> <strong>dx</strong> </span> = v + x<span class="intbl"> <em>dv</em> <strong>dx</strong></span></b> we can solve the Differential Equation.</p>
|
||
<p>An example will show how it is all done:</p>
|
||
<div class="example">
|
||
<h3>Example: Solve <span class="intbl"> <em>dy</em> <strong>dx</strong> </span> = <span class="intbl"><em>x<sup>2</sup> + y<sup>2</sup></em><strong>xy</strong></span></h3>
|
||
<p>Can we get it in F( <span class="intbl"> <em>y</em> <strong>x</strong> </span> ) style?</p>
|
||
<div class="tbl">
|
||
<div class="row"><span class="left">Start with:</span><span class="right"><span class="intbl"> <em>x<sup>2</sup> + y<sup>2</sup></em> <strong>xy</strong> </span></span></div>
|
||
<div class="row"><span class="left">Separate terms:</span><span class="right"><span class="intbl"> <em>x<sup>2</sup></em> <strong>xy</strong> </span> + <span class="intbl"> <em>y<sup>2</sup></em> <strong>xy</strong> </span></span></div>
|
||
<div class="row"><span class="left">Simplify:</span><span class="right"><span class="intbl"> <em>x</em> <strong>y</strong> </span> + <span class="intbl"> <em>y</em> <strong>x</strong> </span></span></div>
|
||
<div class="row"><span class="left">Reciprocal of first term:</span><span class="right">( <span class="intbl"> <em>y</em> <strong>x</strong> </span> )<sup>-1</sup> + <span class="intbl"> <em>y</em> <strong>x</strong> </span></span></div>
|
||
</div>
|
||
<p>Yes, we have a function of <span class="intbl"><em>y</em><strong>x</strong></span>.</p>
|
||
<p>So let's go:</p>
|
||
<div class="tbl">
|
||
<div class="row"><span class="left">Start with:</span><span class="right"><span class="intbl"> <em>dy</em> <strong>dx</strong> </span> = ( <span class="intbl"> <em>y</em> <strong>x</strong> </span> )<sup>-1</sup> + <span class="intbl"> <em>y</em> <strong>x</strong> </span></span></div>
|
||
<div class="row"><span class="left"><b>y = vx</b> and<b> <span class="intbl"> <em>dy</em><strong>dx</strong> </span> = v + x<span class="intbl"> <em>dv</em><strong>dx</strong></span></b>:</span><span class="right">v + x<span class="intbl"> <em>dv</em> <strong>dx</strong> </span> = v<sup>-1</sup> + v</span></div>
|
||
<div class="row"><span class="left">Subtract v from both sides:</span><span class="right">x<span class="intbl"> <em>dv</em> <strong>dx</strong> </span> = v<sup>-1</sup></span></div>
|
||
</div>
|
||
<p>Now use <a href="separation-variables.html">Separation of Variables</a>:</p>
|
||
<div class="tbl">
|
||
<div class="row"><span class="left">Separate the variables:</span><span class="right">v dv = <span class="intbl"> <em>1</em> <strong>x</strong> </span> dx</span></div>
|
||
<div class="row"><span class="left">Put the integral sign in front:</span><span class="right"><span class="integral">∫</span>v dv = <span class="integral">∫</span><span class="intbl"> <em>1</em> <strong>x</strong> </span> dx</span></div>
|
||
<div class="row"><span class="left">Integrate:</span><span class="right"><span class="intbl"> <em>v<sup>2</sup></em> <strong>2</strong> </span> = ln(x) + C</span></div>
|
||
<div class="row"><span class="left">Then we make <b>C = ln(k)</b>:</span><span class="right"><span class="intbl"> <em>v<sup>2</sup></em> <strong>2</strong> </span> = ln(x) + ln(k)</span></div>
|
||
<div class="row"><span class="left">Combine ln:</span><span class="right"><span class="intbl"> <em>v<sup>2</sup></em> <strong>2</strong> </span> = ln(kx)</span></div>
|
||
<div class="row"><span class="left">Simplify:</span><span class="right">v = ±√(2 ln(kx))</span></div>
|
||
</div>
|
||
<p>Now substitute back v = <span class="intbl"> <em>y</em> <strong>x</strong> </span></p>
|
||
<div class="tbl">
|
||
<div class="row"><span class="left">Substitute v = <span class="intbl"> <em>y</em> <strong>x</strong> </span>:</span><span class="right"><span class="intbl"> <em>y</em> <strong>x</strong> </span> = ±√(2 ln(kx))</span></div>
|
||
<div class="row"><span class="left">Simplify:</span><span class="right">y = ±x √(2 ln(kx))</span></div>
|
||
</div>
|
||
<p>And we have the solution.</p>
|
||
<p>The positive portion looks like this:</p>
|
||
<p class="center"><img src="images/x-sqrt-2lnkx.svg" alt="y = x sqrt(2 ln(kx))"></p>
|
||
</div>
|
||
<p> </p>
|
||
<p>Another example:</p>
|
||
<div class="example">
|
||
<h3>Example: Solve <span class="intbl"> <em>dy</em> <strong>dx</strong> </span> = <span class="intbl"> <em>y(x−y)</em> <strong>x<sup>2</sup></strong> </span></h3>
|
||
<p>Can we get it in F( <span class="intbl"> <em>y</em> <strong>x</strong> </span> ) style?</p>
|
||
<div class="tbl">
|
||
<div class="row"><span class="left">Start with:</span><span class="right"><span class="intbl"> <em>y(x−y)</em> <strong>x<sup>2</sup></strong> </span></span></div>
|
||
<div class="row"><span class="left">Separate terms:</span><span class="right"><span class="intbl"> <em>xy</em> <strong>x<sup>2</sup></strong> </span> − <span class="intbl"> <em>y<sup>2</sup></em> <strong>x<sup>2</sup></strong> </span></span></div>
|
||
<div class="row"><span class="left">Simplify:</span><span class="right"><span class="intbl"> <em>y</em> <strong>x</strong> </span> − ( <span class="intbl"> <em>y</em> <strong>x</strong> </span> )<sup>2</sup></span></div>
|
||
</div>
|
||
<p>Yes! So let's go:</p>
|
||
<div class="tbl">
|
||
<div class="row"><span class="left">Start with:</span><span class="right"><span class="intbl"> <em>dy</em> <strong>dx</strong> </span> = <span class="intbl"> <em>y</em> <strong>x</strong> </span> − ( <span class="intbl"> <em>y</em> <strong>x</strong> </span> )<sup>2</sup></span></div>
|
||
<div class="row"><span class="left"><b>y = vx</b> and <span class="intbl"> <em><b>dy</b></em> <b> <strong>dx</strong></b></span><b> = v + x<span class="intbl"> <em>dv</em><strong>dx</strong> </span></b></span><span class="right">v + x<span class="intbl"> <em>dv</em> <strong>dx</strong> </span> = v − v<sup>2</sup></span></div>
|
||
<div class="row"><span class="left">Subtract v from both sides:</span><span class="right">x<span class="intbl"> <em>dv</em> <strong>dx</strong> </span> = −v<sup>2</sup></span></div>
|
||
</div>
|
||
<p>Now use <a href="separation-variables.html">Separation of Variables</a>:</p>
|
||
<div class="tbl">
|
||
<div class="row"><span class="left">Separate the variables:</span><span class="right">−<span class="intbl"> <em>1</em> <strong>v<sup>2</sup></strong> </span> dv = <span class="intbl"> <em>1</em> <strong>x</strong> </span> dx</span></div>
|
||
<div class="row"><span class="left">Put the integral sign in front:</span><span class="right"><span class="integral">∫</span>−<span class="intbl"> <em>1</em> <strong>v<sup>2</sup></strong> </span> dv = <span class="integral">∫</span><span class="intbl"> <em>1</em> <strong>x</strong> </span> dx</span></div>
|
||
<div class="row"><span class="left">Integrate:</span><span class="right"><span class="intbl"> <em>1</em> <strong>v</strong> </span> = ln(x) + C</span></div>
|
||
<div class="row"><span class="left">Then we make <b>C = ln(k)</b>:</span><span class="right"><span class="intbl"> <em>1</em> <strong>v</strong> </span> = ln(x) + ln(k)</span></div>
|
||
<div class="row"><span class="left">Combine ln:</span><span class="right"><span class="intbl"> <em>1</em> <strong>v</strong> </span> = ln(kx)</span></div>
|
||
<div class="row"><span class="left">Simplify:</span><span class="right">v = <span class="intbl"> <em>1</em> <strong>ln(kx)</strong> </span></span></div>
|
||
</div>
|
||
<p>Now substitute back v = <span class="intbl"> <em>y</em> <strong>x</strong> </span></p>
|
||
<div class="tbl">
|
||
<div class="row"><span class="left">Substitute v = <span class="intbl"> <em>y</em> <strong>x</strong> </span>:</span><span class="right"><span class="intbl"> <em>y</em> <strong>x</strong> </span> = <span class="intbl"> <em>1</em> <strong>ln(kx)</strong> </span></span></div>
|
||
<div class="row"><span class="left">Simplify:</span><span class="right">y = <span class="intbl"> <em>x</em> <strong>ln(kx)</strong> </span></span></div>
|
||
</div>
|
||
<p>And we have the solution.</p>
|
||
<p>Here are some sample k values:</p>
|
||
<p class="center"><img src="images/diff-eq-hom-2.svg" alt="y = x / ln(kx)"></p>
|
||
</div>
|
||
<p>And one last example:</p>
|
||
<div class="example">
|
||
<h3>Example: Solve <span class="intbl"> <em>dy</em> <strong>dx</strong> </span> = <span class="intbl"> <em>x−y</em> <strong>x+y</strong> </span></h3>
|
||
<p>Can we get it in F( <span class="intbl"> <em>y</em> <strong>x</strong> </span> ) style?</p>
|
||
<div class="tbl">
|
||
<div class="row"><span class="left">Start with:</span><span class="right"><span class="intbl"> <em>x−y</em> <strong>x+y</strong> </span></span></div>
|
||
<div class="row"><span class="left">Divide through by x:</span><span class="right"><span class="intbl"> <em>x/x−y/x</em> <strong>x/x+y/x</strong> </span></span></div>
|
||
<div class="row"><span class="left">Simplify:</span><span class="right"><span class="intbl"> <em>1−y/x</em> <strong>1+y/x</strong> </span></span></div>
|
||
</div>
|
||
<p>Yes! So let's go:</p>
|
||
<div class="tbl">
|
||
<div class="row"><span class="left">Start with:</span><span class="right"><span class="intbl"> <em>dy</em> <strong>dx</strong> </span> = <span class="intbl"> <em>1−y/x</em> <strong>1+y/x</strong> </span></span></div>
|
||
<div class="row"><span class="left"><b>y = vx</b> and <span class="intbl"> <em><b>dy</b></em> <b> <strong>dx</strong></b></span><b> = v + x<span class="intbl"> <em>dv</em><strong>dx</strong> </span></b></span><span class="right">v + x<span class="intbl"> <em>dv</em> <strong>dx</strong> </span> = <span class="intbl"> <em>1−v</em> <strong>1+v</strong> </span></span></div>
|
||
<div class="row"><span class="left">Subtract v from both sides:</span><span class="right">x<span class="intbl"> <em>dv</em> <strong>dx</strong> </span> = <span class="intbl"> <em>1−v</em> <strong>1+v</strong> </span> − v</span></div>
|
||
<div class="row"><span class="left">Then:</span><span class="right">x<span class="intbl"> <em>dv</em> <strong>dx</strong> </span> = <span class="intbl"> <em>1−v</em> <strong>1+v</strong> </span> − <span class="intbl"> <em>v+v<sup>2</sup></em> <strong>1+v</strong> </span></span></div>
|
||
<div class="row"><span class="left">Simplify:</span><span class="right">x<span class="intbl"> <em>dv</em> <strong>dx</strong> </span> = <span class="intbl"> <em>1−2v−v<sup>2</sup></em> <strong>1+v</strong> </span></span></div>
|
||
</div>
|
||
<p>Now use <a href="separation-variables.html">Separation of Variables</a>:</p>
|
||
<div class="tbl">
|
||
<div class="row"><span class="left">Separate the variables:</span><span class="right"><span class="intbl"> <em>1+v</em> <strong>1−2v−v<sup>2</sup></strong> </span> dv = <span class="intbl"> <em>1</em> <strong>x</strong> </span> dx</span></div>
|
||
<div class="row"><span class="left">Put the integral sign in front:</span><span class="right"><span class="integral">∫</span><span class="intbl"> <em>1+v</em> <strong>1−2v−v<sup>2</sup></strong> </span> dv = <span class="integral">∫</span><span class="intbl"> <em>1</em> <strong>x</strong> </span> dx</span></div>
|
||
<div class="row"><span class="left">Integrate:</span><span class="right">−<span class="intbl"> <em>1</em> <strong>2</strong> </span> ln(1−2v−v<sup>2</sup>) = ln(x) + C</span></div>
|
||
<div class="row"><span class="left">Then we make <b>C = ln(k)</b>:</span><span class="right">−<span class="intbl"> <em>1</em> <strong>2</strong> </span> ln(1−2v−v<sup>2</sup>) = ln(x) + ln(k)</span></div>
|
||
<div class="row"><span class="left">Combine ln:</span><span class="right">(1−2v−v<sup>2</sup>)<sup>-½</sup> = kx</span></div>
|
||
<div class="row"><span class="left">Square and Reciprocal:</span><span class="right">1−2v−v<sup>2</sup> = <span class="intbl"> <em>1</em> <strong>k<sup>2</sup>x<sup>2</sup></strong> </span></span></div>
|
||
</div>
|
||
<p>Now substitute back v = <span class="intbl"> <em>y</em> <strong>x</strong> </span></p>
|
||
<div class="tbl">
|
||
<div class="row"><span class="left">Substitute v = <span class="intbl"> <em>y</em> <strong>x</strong> </span>:</span><span class="right">1−2( <span class="intbl"> <em>y</em> <strong>x</strong> </span> )−( <span class="intbl"> <em>y</em> <strong>x</strong> </span> )<sup>2</sup> = <span class="intbl"> <em>1</em> <strong>k<sup>2</sup>x<sup>2</sup></strong> </span></span></div>
|
||
<div class="row"><span class="left">Multiply through by <b>x<sup>2</sup></b>:</span><span class="right">x<sup>2</sup>−2xy−y<sup>2</sup> = <span class="intbl"> <em>1</em> <strong>k<sup>2</sup></strong> </span></span></div>
|
||
</div>
|
||
<p>We are nearly there ... it is nice to separate out y though!<br>
|
||
We can try to factor <span class="larger">x<sup>2</sup>−2xy−y<sup>2</sup></span> but we must do some rearranging first:</p>
|
||
<div class="tbl">
|
||
<div class="row"><span class="left">Change signs:</span><span class="right">y<sup>2</sup>+2xy−x<sup>2</sup> = − <span class="intbl"> <em>1</em> <strong>k<sup>2</sup></strong> </span></span></div>
|
||
<div class="row"><span class="left">Replace − <span class="intbl"> <em>1</em> <strong>k<sup>2</sup></strong> </span> by c:</span><span class="right">y<sup>2</sup>+2xy−x<sup>2</sup> = c</span></div>
|
||
<div class="row"><span class="left">Add 2x<sup>2</sup> to both sides:</span><span class="right">y<sup>2</sup>+2xy+x<sup>2 </sup>= 2x<sup>2</sup>+c</span></div>
|
||
<div class="row"><span class="left">Factor:</span><span class="right">(y+x)<sup>2</sup> = 2x<sup>2</sup>+c<span class="intbl"></span></span></div>
|
||
<div class="row"><span class="left">Square root:</span><span class="right">y+x = ±√(2x<sup>2</sup>+c)<span class="intbl"></span></span></div>
|
||
<div class="row"><span class="left">Subtract x from both sides:</span><span class="right">y = ±√(2x<sup>2</sup>+c)<span class="intbl"></span> − x<span class="intbl"></span></span></div>
|
||
</div>
|
||
<p>And we have the solution.</p>
|
||
<p>The positive portion looks like this:</p>
|
||
<p class="center"><img src="images/diff-eq-hom-3.svg" alt="y = sqrt(2x^2+c) - x"></p>
|
||
</div>
|
||
<p> </p>
|
||
|
||
<div class="questions">
|
||
<script>getQ(9419, 9420, 9421, 9422, 9423, 9424, 9425, 9426, 9427, 9428);</script>
|
||
</div>
|
||
|
||
<div class="related">
|
||
<a href="homogeneous-function.html">Homogeneous Functions</a>
|
||
<a href="differential-equations.html">Differential Equation</a>
|
||
<a href="index.html">Calculus Index</a>
|
||
</div>
|
||
<!-- #EndEditable -->
|
||
|
||
</article>
|
||
|
||
<div id="adend" class="centerfull noprint"></div>
|
||
<footer id="footer" class="centerfull noprint"></footer>
|
||
<div id="copyrt">Copyright © 2020 MathsIsFun.com</div>
|
||
|
||
</div>
|
||
</body><!-- #EndTemplate -->
|
||
<!-- Mirrored from www.mathsisfun.com/calculus/differential-equations-homogeneous.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:49:27 GMT -->
|
||
</html> |