lkarch.org/tools/mathisfun/www.mathsisfun.com/calculus/differential-equations-first-order-linear.html
Lucas Kent e39465ad2f Changes to be committed:
new file:   Files/flashplayer_32_sa.exe
	new file:   favicon.ico
	new file:   globe.gif
	new file:   imgs/download.png
	new file:   imgs/zuck.jpg
	new file:   index.html
	new file:   other.ico
	new file:   script.js
	new file:   site.webmanifest
	new file:   sitemap.html
	new file:   styles/backround.css
	new file:   styles/border.css
	new file:   styles/fonts/Titillium_Web/OFL.txt
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf
	new file:   styles/fonts/webfontkit-20221027-163353/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2
	new file:   styles/fonts/webfontkit-20221027-165950/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2
	new file:   styles/style.css
	new file:   tools/2048/.gitignore
	new file:   tools/2048/.jshintrc
	new file:   tools/2048/CONTRIBUTING.md
	new file:   tools/2048/LICENSE.txt
	new file:   tools/2048/README.md
	new file:   tools/2048/Rakefile
	new file:   tools/2048/favicon.ico
	new file:   tools/2048/index.html
	new file:   tools/2048/js/animframe_polyfill.js
	new file:   tools/2048/js/application.js
	new file:   tools/2048/js/bind_polyfill.js
	new file:   tools/2048/js/classlist_polyfill.js
	new file:   tools/2048/js/game_manager.js
	new file:   tools/2048/js/grid.js
	new file:   tools/2048/js/html_actuator.js
	new file:   tools/2048/js/keyboard_input_manager.js
	new file:   tools/2048/js/local_storage_manager.js
	new file:   tools/2048/js/tile.js
    new file:   tools/2048/meta/apple-touch-icon.png
	new file:   tools/webretro/cores/neocd_libretro.js
	new file:   tools/webretro/cores/neocd_libretro.wasm
	new file:   tools/webretro/cores/nestopia_libretro.js
	new file:   tools/webretro/cores/nestopia_libretro.wasm
	new file:   tools/webretro/cores/o2em_libretro.js
	new file:   tools/webretro/cores/o2em_libretro.wasm
	new file:   tools/webretro/cores/opera_libretro.js
	new file:   tools/webretro/cores/opera_libretro.wasm
2022-11-02 08:40:01 -04:00

665 lines
28 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html lang="en"><!-- #BeginTemplate "/Templates/Advanced.dwt" --><!-- DW6 -->
<!-- Mirrored from www.mathsisfun.com/calculus/differential-equations-first-order-linear.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:49:25 GMT -->
<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
<!-- #BeginEditable "doctitle" -->
<title>Solution of First Order Linear Differential Equations</title>
<meta name="description" content="Math explained in easy language, plus puzzles, games, quizzes, worksheets and a forum. For K-12 kids, teachers and parents.">
<style>
.integral { font: 160% Georgia, Arial; position: relative; top: 1px; padding: 0 1px 0 0.2rem;}
</style>
<!-- #EndEditable -->
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
<meta name="HandheldFriendly" content="true">
<meta name="referrer" content="always">
<link rel="preload" href="../images/style/font-champ-bold.ttf" as="font" type="font/ttf" crossorigin="">
<link rel="preload" href="../style4.css" as="style">
<link rel="preload" href="../main4.js" as="script">
<link rel="stylesheet" href="../style4.css">
<script src="../main4.js" defer="defer"></script>
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async="" src="https://www.googletagmanager.com/gtag/js?id=UA-29771508-1"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'UA-29771508-1');
</script>
</head>
<body id="bodybg" class="adv">
<div id="stt"></div>
<div id="adTop"></div>
<header>
<div id="hdr"></div>
<div id="tran"></div>
<div id="adHide"></div>
<div id="cookOK"></div>
</header>
<div class="mid">
<nav>
<div id="menuWide" class="menu"></div>
<div id="logo"><a href="../index.html"><img src="../images/style/logo-adv.svg" alt="Math is Fun Advanced"></a></div>
<div id="search" role="search"></div>
<div id="linkto"></div>
<div id="menuSlim" class="menu"></div>
<div id="menuTiny" class="menu"></div>
</nav>
<div id="extra"></div>
<article id="content" role="main">
<!-- #BeginEditable "Body" -->
<h1 class="center">First Order Linear Differential Equations</h1>
<p class="center">You might like to read about <a href="differential-equations.html">Differential Equations</a><br>
and <a href="separation-variables.html">Separation of Variables</a> first!</p>
<div class="def">
<p>A Differential Equation is an equation with a <a href="../sets/function.html">function</a> and one or more of its <a href="derivatives-introduction.html">derivatives</a>:</p>
<p class="center"><img src="images/diff-eq-1.svg" alt="y + dy/dx = 5x" height="123" width="188"><br>
Example: an equation with the function <b>y</b> and its
derivative<b> <span class="intbl">
<em>dy</em>
<strong>dx</strong>
</span></b> &nbsp;</p>
</div>
<p>Here we will look at solving a special class of Differential Equations called <b>First Order Linear Differential Equations</b></p>
<h2>First Order</h2>
<p>They are "First Order" when there is only <b> <span class="intbl">
<em>dy</em>
<strong>dx</strong>
</span></b> , not <b> <span class="intbl">
<em>d<sup>2</sup>y</em>
<strong>dx<sup>2</sup></strong>
</span></b> or <b> <span class="intbl">
<em>d<sup>3</sup>y</em>
<strong>dx<sup>3</sup></strong>
</span></b> etc</p>
<h2>Linear</h2>
<p>A <b>first order differential equation</b> is <b>linear</b> when it can be made to look like this:</p>
<p class="center large"><span class="intbl">
<em>dy</em>
<strong>dx</strong>
</span> + P(x)y = Q(x)</p>
<p>Where <b>P(x)</b> and <b>Q(x)</b> are functions of x.</p>
<p>To solve it there is a special method:</p>
<ul>
<li>We invent two new functions of x, call them <b>u</b> and <b>v</b>, and say that <b>y=uv</b>.</li>
<li>We then solve to find <b>u</b>, and then find <b>v</b>, and tidy up and we are done!</li>
</ul>
<p>And we also use the derivative of <b>y=uv</b> (see <a href="derivatives-rules.html"> <span class="center">Derivative Rules</span> (Product Rule) </a>):</p>
<p class="center large"><span class="intbl">
<em>dy</em>
<strong>dx</strong>
</span> = u<span class="intbl">
<em>dv</em>
<strong>dx</strong>
</span> + v<span class="intbl">
<em>du</em>
<strong>dx</strong>
</span></p>
<h2>Steps</h2>
<p>Here is a step-by-step method for solving them:</p>
<ul>
<li>1. Substitute <b>y = uv</b>, and
<p class="center large"><span class="intbl">
<em>dy</em>
<strong>dx</strong>
</span> = u<span class="intbl">
<em>dv</em>
<strong>dx</strong>
</span> + v<span class="intbl">
<em>du</em>
<strong>dx</strong>
</span></p>
into
<p class="center large"><span class="intbl">
<em>dy</em>
<strong>dx</strong>
</span> + P(x)y = Q(x)</p></li>
<li>2. Factor the parts involving <b>v</b></li>
<li>3. Put the <b>v</b> term equal to zero (this gives a differential equation in <b>u</b> and <b>x</b> which can be solved in the next step)</li>
<li>4. Solve using <a href="separation-variables.html">separation of variables</a> to find <b>u</b></li>
<li>5. Substitute <b>u</b> back into the equation we got at step 2</li>
<li>6. Solve that to find <b>v</b></li>
<li>7. Finally, substitute <b>u</b> and <b>v</b> into <b>y = uv</b> to get our solution!</li>
</ul>
<p>Let's try an example to see:</p>
<div class="example">
<h3>Example 1: Solve this:
<p class="center larger">&nbsp; <span class="intbl">
<em>dy</em>
<strong>dx</strong>
</span> <span class="intbl">
<em>y</em>
<strong>x</strong>
</span> = 1</p></h3>
<p>First, is this linear? Yes, as it is in the form</p>
<p class="center"><span class="larger"><span class="intbl">
<em>dy</em>
<strong>dx</strong>
</span> + P(x)y = Q(x)</span><br>
where <b>P(x) = <span class="intbl">
<em>1</em>
<strong>x</strong>
</span></b> and <b>Q(x) = 1</b></p>
<p>So let's follow the steps:</p>
<p>Step 1:
Substitute <b>y = uv</b>, and <span class="center">&nbsp;<b> <span class="intbl">
<em>dy</em>
<strong>dx</strong>
</span> = u <span class="intbl">
<em>dv</em>
<strong>dx</strong>
</span> + v <span class="intbl">
<em>du</em>
<strong>dx</strong>
</span></b> </span></p>
<div class="tbl">
<div class="row"><span class="left">So this:</span><span class="right"><span class="intbl">
<em>dy</em>
<strong>dx</strong>
</span> <span class="intbl">
<em>y</em>
<strong>x</strong>
</span> = 1</span></div>
<div class="row"><span class="left">Becomes this:</span><span class="right">u<span class="intbl">
<em>dv</em>
<strong>dx</strong>
</span> + v<span class="intbl">
<em>du</em>
<strong>dx</strong>
</span> <span class="intbl">
<em>uv</em>
<strong>x</strong>
</span> = 1</span></div>
</div>
<p>Step 2: Factor the parts involving <b>v</b></p>
<div class="tbl">
<div class="row"><span class="left">Factor <b>v</b>:</span><span class="right">u <span class="intbl">
<em>dv</em>
<strong>dx</strong>
</span> + v( <span class="intbl">
<em>du</em>
<strong>dx</strong>
</span> <span class="intbl">
<em>u</em>
<strong>x</strong>
</span> ) = 1</span></div>
</div>
<p>Step 3: Put the <b>v</b> term equal to zero</p>
<div class="tbl">
<div class="row"><span class="left"><b>v</b> term equal to zero:</span><span class="right"> <span class="intbl">
<em>du</em>
<strong>dx</strong>
</span> <span class="intbl">
<em>u</em>
<strong>x</strong>
</span> = 0</span></div>
<div class="row"><span class="left">So:</span><span class="right"> <span class="intbl">
<em>du</em>
<strong>dx</strong>
</span> = <span class="intbl">
<em>u</em>
<strong>x</strong>
</span></span></div>
</div>
<p>Step 4: Solve using <a href="separation-variables.html">separation of variables</a> to find <b>u</b></p>
<div class="tbl">
<div class="row"><span class="left">Separate variables:</span><span class="right"> <span class="intbl">
<em>du</em>
<strong>u</strong>
</span> = <span class="intbl">
<em>dx</em>
<strong>x</strong>
</span> </span></div>
<div class="row"><span class="left">Put integral sign:</span><span class="right"> <span class="integral"></span><span class="intbl">
<em>du</em>
<strong>u</strong>
</span> = <span class="integral"></span><span class="intbl">
<em>dx</em>
<strong>x</strong>
</span> </span></div>
<div class="row"><span class="left">Integrate:</span><span class="right">ln(u) = ln(x) + C</span></div>
<div class="row"><span class="left">Make C = ln(k):</span><span class="right">ln(u) = ln(x) + ln(k)</span></div>
<div class="row"><span class="left">And so:</span><span class="right">u = kx</span></div>
</div>
<p>Step 5: Substitute <b>u</b> back into the equation at Step 2</p>
<div class="tbl">
<div class="row"><span class="left">(Remember <b>v</b> term equals 0 so can be ignored):</span><span class="right">kx <span class="intbl">
<em>dv</em>
<strong>dx</strong>
</span> = 1</span></div>
</div>
<p>Step 6: Solve this to find <b>v</b></p>
<div class="tbl">
<div class="row"><span class="left">Separate variables:</span><span class="right">k dv = <span class="intbl">
<em>dx</em>
<strong>x</strong>
</span> </span></div>
<div class="row"><span class="left">Put integral sign:</span><span class="right"> <span class="integral"></span>k dv
<strong></strong>
= <span class="integral"></span><span class="intbl">
<em>dx</em>
<strong>x</strong>
</span> </span></div>
<div class="row"><span class="left">Integrate:</span><span class="right">kv = ln(x) + C</span></div>
<div class="row"><span class="left">Make C = ln(c):</span><span class="right">kv = ln(x) + ln(c)</span></div>
<div class="row"><span class="left">And so:</span><span class="right">kv = ln(cx)</span></div>
<div class="row"><span class="left">And so:</span><span class="right">v = <span class="intbl">
<em>1</em>
<strong>k</strong>
</span> ln(cx)</span></div>
</div>
<p>Step 7: Substitute into <b>y = uv</b> to find the solution to the original equation.</p>
<div class="tbl">
<div class="row"><span class="left">y = uv:</span><span class="right">y = kx <span class="intbl">
<em>1</em>
<strong>k</strong>
</span> ln(cx)</span></div>
<div class="row"><span class="left">Simplify:</span><span class="right">y = x ln(cx)</span></div>
</div>
<p>And it produces this nice family of curves:</p>
<p class="center"><img src="images/diff-eq-lin-b.svg" alt="differential equation at 0.2, 0.4, 0.6, 0.8 and 1.0" height="207" width="178"> <span class="larger"><br>
y = x ln(cx)</span> for various values of <b>c</b></p>
</div>
<p>What is the meaning of those curves?</p>
<p class="center">They are the solution to the equation <span class="center">&nbsp;<b> <span class="intbl">
<em>dy</em>
<strong>dx</strong>
</span> <span class="intbl">
<em>y</em>
<strong>x</strong>
</span> = 1</b></span></p>
<p>In other words:</p>
<p class="center"><b>Anywhere on any of those curves<br>
the slope minus <span class="intbl">
<em>y</em>
<strong>x</strong>
</span> equals 1</b></p>
<p>Let's check a few points on the <b>c=0.6</b> curve:</p>
<p class="center"><img src="images/diff-eq-lin-c.svg" alt="differential equation graph and points" height="200" width="227"></p>
<div class="simple">
<p>Estmating off the graph (to 1 decimal place):</p>
<table style="border: 0; margin:auto;">
<tbody>
<tr style="text-align:center;">
<th>Point</th>
<th>x</th>
<th>y</th>
<th>Slope (<span class="intbl">
<em>dy</em>
<strong>dx</strong>
</span>)</th>
<th><span class="intbl">
<em>dy</em>
<strong>dx</strong>
</span> <span class="intbl">
<em>y</em>
<strong>x</strong>
</span> </th>
</tr>
<tr style="text-align:center;">
<th>A</th>
<td>0.6</td>
<td>0.6</td>
<td>0</td>
<td>0 <span class="intbl">
<em>0.6</em>
<strong>0.6</strong>
</span> = 0 + 1 = <b>1</b></td>
</tr>
<tr style="text-align:center;">
<th>B</th>
<td>1.6</td>
<td>0</td>
<td>1</td>
<td>1 <span class="intbl">
<em>0</em>
<strong>1.6</strong>
</span> = 1 0 = <b>1</b></td>
</tr>
<tr style="text-align:center;">
<th>C</th>
<td>2.5</td>
<td>1</td>
<td> 1.4</td>
<td>1.4 <span class="intbl">
<em>1</em>
<strong>2.5</strong>
</span> = 1.4 0.4 = <b>1</b></td>
</tr>
</tbody></table>
</div>
<p>Why not test a few points yourself? You can <a href="../data/function-grapher6e0c.html?func1=x*ln%280.6*x%29&amp;xmin=-3.840&amp;xmax=3.480&amp;ymin=-2.380&amp;ymax=2.500&amp;aval=0.2480&amp;uni=1">plot the curve here</a>.</p>
<p>&nbsp;</p>
<p>Perhaps another example to help you? Maybe a little harder?</p>
<div class="example">
<h3>Example 2: Solve this:
<p class="center larger">&nbsp; <span class="intbl">
<em>dy</em>
<strong>dx</strong>
</span> <span class="intbl">
<em>3y</em>
<strong>x</strong>
</span> = x</p></h3>
<p>First, is this linear? Yes, as it is in the form</p>
<p class="center"><span class="larger"><span class="intbl">
<em>dy</em>
<strong>dx</strong>
</span> + P(x)y = Q(x)</span><br>
where <b>P(x) = <span class="intbl">
<em>3</em>
<strong>x</strong>
</span></b> and <b>Q(x) = x</b></p>
<p>So let's follow the steps:</p>
<p>Step 1:
Substitute <b>y = uv</b>, and <span class="center">&nbsp;<b> <span class="intbl">
<em>dy</em>
<strong>dx</strong>
</span> = u <span class="intbl">
<em>dv</em>
<strong>dx</strong>
</span> + v <span class="intbl">
<em>du</em>
<strong>dx</strong>
</span></b> </span></p>
<div class="tbl">
<div class="row"><span class="left">So this:</span><span class="right"><span class="intbl">
<em>dy</em>
<strong>dx</strong>
</span> <span class="intbl">
<em>3y</em>
<strong>x</strong>
</span> = x</span></div>
<div class="row"><span class="left">Becomes this:</span><span class="right">&nbsp;u <span class="intbl">
<em>dv</em>
<strong>dx</strong>
</span> + v <span class="intbl">
<em>du</em>
<strong>dx</strong>
</span> <span class="intbl">
<em>3uv</em>
<strong>x</strong>
</span> = x</span></div>
</div>
<p>Step 2: Factor the parts involving <b>v</b></p>
<div class="tbl">
<div class="row"><span class="left">Factor <b>v</b>:</span><span class="right">u <span class="intbl">
<em>dv</em>
<strong>dx</strong>
</span> + v( <span class="intbl">
<em>du</em>
<strong>dx</strong>
</span> <span class="intbl">
<em>3u</em>
<strong>x</strong>
</span> ) = x</span></div>
</div>
<p>Step 3: Put the <b>v</b> term equal to zero</p>
<div class="tbl">
<div class="row"><span class="left"><b>v</b> term = zero:</span><span class="right"> <span class="intbl">
<em>du</em>
<strong>dx</strong>
</span> <span class="intbl">
<em>3u</em>
<strong>x</strong>
</span> = 0</span></div>
<div class="row"><span class="left">So:</span><span class="right"> <span class="intbl">
<em>du</em>
<strong>dx</strong>
</span> = <span class="intbl">
<em>3u</em>
<strong>x</strong>
</span> </span></div>
</div>
<p>Step 4: Solve using <a href="separation-variables.html">separation of variables</a> to find <b>u</b></p>
<div class="tbl">
<div class="row"><span class="left">Separate variables:</span><span class="right"> <span class="intbl">
<em>du</em>
<strong>u</strong>
</span> = 3 <span class="intbl">
<em>dx</em>
<strong>x</strong>
</span> </span></div>
<div class="row"><span class="left">Put integral sign:</span><span class="right"> <span class="integral"></span><span class="intbl">
<em>du</em>
<strong>u</strong>
</span> = 3 <span class="integral"></span><span class="intbl">
<em>dx</em>
<strong>x</strong>
</span> </span></div>
<div class="row"><span class="left">Integrate:</span><span class="right">ln(u) = 3 ln(x) + C</span></div>
<div class="row"><span class="left">Make C = ln(k):</span><span class="right">ln(u) + ln(k) = 3ln(x)</span></div>
<div class="row"><span class="left">Then:</span><span class="right">uk = x<sup>3</sup></span></div>
<div class="row"><span class="left">And so:</span><span class="right">u = <span class="intbl">
<em>x<sup>3</sup></em>
<strong>k</strong>
</span></span></div>
</div>
<p>Step 5: Substitute <b>u</b> back into the equation at Step 2</p>
<div class="tbl">
<div class="row"><span class="left">(Remember <b>v</b> term equals 0 so can be ignored):</span><span class="right">( <span class="intbl">
<em>x<sup>3</sup></em>
<strong>k</strong>
</span> ) <span class="intbl">
<em>dv</em>
<strong>dx</strong>
</span> = x </span></div>
</div>
<p>Step 6: Solve this to find <b>v</b></p>
<div class="tbl">
<div class="row"><span class="left">Separate variables:</span><span class="right">dv = k x<sup>-2</sup> dx</span></div>
<div class="row"><span class="left">Put integral sign:</span><span class="right"> <span class="integral"></span>dv = <span class="integral"></span>k x<sup>-2</sup> dx</span></div>
<div class="row"><span class="left">Integrate:</span><span class="right">v = k x<sup>-1</sup> + D</span></div>
</div>
<p>Step 7: Substitute into <b>y = uv</b> to find the solution to the original equation.</p>
<div class="tbl">
<div class="row"><span class="left">y = uv:</span><span class="right">y = <span class="intbl">
<em>x<sup>3</sup></em>
<strong>k</strong>
</span> ( k x<sup>-1</sup> + D )</span></div>
<div class="row"><span class="left">Simplify:</span><span class="right">y = x<sup>2</sup> + <span class="intbl">
<em>D</em>
<strong>k</strong>
</span> x<sup>3</sup></span></div>
<div class="row"><span class="left">Replace <b>D/k</b> with a single constant <b>c</b>: </span><span class="right">y =
c
x<sup>3 </sup> x<sup>2</sup></span></div>
</div>
<p>And it produces this nice family of curves:</p>
<p class="center"><img src="images/diff-eq-lin-a.svg" alt="differential equation at 0.2, 0.4, 0.6 and 0.8" height="211" width="233"> <span class="larger"><br>
y = c
x<sup>3 </sup> x<sup>2</sup></span> for various values of <b>c</b></p>
</div>
<p>And one more example, this time even <b> harder</b>:</p>
<div class="example">
<h3>Example 3: Solve this:</h3>
<p class="center larger">&nbsp; <span class="intbl">
<em>dy</em>
<strong>dx</strong>
</span> + 2xy= 2x<sup>3</sup></p>
<p>First, is this linear? Yes, as it is in the form</p>
<p class="center"><span class="larger"><span class="intbl">
<em>dy</em>
<strong>dx</strong>
</span> + P(x)y = Q(x)</span><br>
where <b>P(x) = 2x</b> and <b>Q(x) = 2x<sup>3</sup></b></p>
<p>So let's follow the steps:</p>
<p>Step 1:
Substitute <b>y = uv</b>, and <span class="center">&nbsp;<b> <span class="intbl">
<em>dy</em>
<strong>dx</strong>
</span> = u <span class="intbl">
<em>dv</em>
<strong>dx</strong>
</span> + v <span class="intbl">
<em>du</em>
<strong>dx</strong>
</span></b> </span></p>
<div class="tbl">
<div class="row"><span class="left">So this:</span><span class="right"><span class="intbl">
<em>dy</em>
<strong>dx</strong>
</span> + 2xy= 2x<sup>3</sup></span></div>
<div class="row"><span class="left">Becomes this:</span><span class="right">&nbsp;u <span class="intbl">
<em>dv</em>
<strong>dx</strong>
</span> + v <span class="intbl">
<em>du</em>
<strong>dx</strong>
</span> + 2xuv
= 2x<sup>3</sup> </span></div>
</div>
<p>Step 2: Factor the parts involving <b>v</b></p>
<div class="tbl">
<div class="row"><span class="left">Factor <b>v</b>:</span><span class="right">u <span class="intbl">
<em>dv</em>
<strong>dx</strong>
</span> + v( <span class="intbl">
<em>du</em>
<strong>dx</strong>
</span> + 2xu
) = 2x<sup>3</sup> </span></div>
</div>
<p>Step 3: Put the <b>v</b> term equal to zero</p>
<div class="tbl">
<div class="row"><span class="left"><b>v</b> term = zero:</span><span class="right"> <span class="intbl">
<em>du</em>
<strong>dx</strong>
</span> + 2xu = 0</span></div>
</div>
<p>Step 4: Solve using <a href="separation-variables.html">separation of variables</a> to find <b>u</b></p>
<div class="tbl">
<div class="row"><span class="left">Separate variables:</span><span class="right"> <span class="intbl">
<em>du</em>
<strong>u</strong>
</span> = 2x dx</span></div>
<div class="row"><span class="left">Put integral sign:</span><span class="right"> <span class="integral"></span><span class="intbl">
<em>du</em>
<strong>u</strong>
</span> = 2<span class="integral"></span>x dx</span></div>
<div class="row"><span class="left">Integrate:</span><span class="right">ln(u) = x<sup>2</sup> + C</span></div>
<div class="row"><span class="left">Make C = ln(k):</span><span class="right">ln(u) + ln(k) = x<sup>2</sup></span></div>
<div class="row"><span class="left">Then:</span><span class="right">uk = e<sup>-x<sup>2</sup></sup></span></div>
<div class="row"><span class="left">And so:</span><span class="right">u = <span class="intbl">
<em>e<sup>-x<sup>2</sup></sup></em>
<strong>k</strong>
</span></span></div>
</div>
<p>Step 5: Substitute <b>u</b> back into the equation at Step 2</p>
<div class="tbl">
<div class="row"><span class="left">(Remember <b>v</b> term equals 0 so can be ignored):</span><span class="right">( <span class="intbl">
<em>e<sup>-x<sup>2</sup></sup></em>
<strong>k</strong>
</span> ) <span class="intbl">
<em>dv</em>
<strong>dx</strong>
</span> = 2x<sup>3</sup> </span></div>
</div>
<p>Step 6: Solve this to find <b>v</b></p>
<div class="tbl">
<div class="row"><span class="left">Separate variables:</span><span class="right">dv = 2k x<sup>3</sup> e<sup>x<sup>2</sup></sup> dx</span></div>
<div class="row"><span class="left">Put integral sign:</span><span class="right"> <span class="integral"></span>dv
= <span class="integral"></span>2k x<sup>3</sup> e<sup>x<sup>2</sup></sup> dx</span></div>
<div class="row"><span class="left">Integrate:</span><span class="right">v = oh no! this is hard!</span></div>
</div>
<p>Let's see ... we can <a href="integration-by-parts.html">integrate by parts</a>... which says:</p>
<p class="center larger"><span class="integral"></span>RS dx = R<span class="integral"></span>S dx <span class="integral"></span>R' ( <span class="integral"></span>S dx ) dx</p>
<p><i>(Side Note: we use R and S here, using u and v could be confusing as they already mean something else.)</i></p>
<p>Choosing R and S is very important, this is the best choice we found:</p>
<ul>
<li><span class="larger">R = x<sup>2</sup></span> and</li>
<li><span class="larger">S = 2x e<sup>x<sup>2</sup></sup></span></li>
</ul>
<p>So let's go:</p>
<div class="tbl">
<div class="row"><span class="left">First pull out k:</span><span class="right">v
= k<span class="integral"></span>2x<sup>3</sup> e<sup>x<sup>2</sup></sup> dx</span></div>
<div class="row"><span class="left"><b>R = x<sup>2</sup></b> and <b>S = 2x e<sup>x<sup>2</sup></sup></b>:</span><span class="right">v
= k<span class="integral"></span>(x<sup>2</sup>)(2xe<sup>x<sup>2</sup></sup>) dx</span></div>
<div class="row"><span class="left">Now integrate by parts:</span><span class="right">v
= kR<span class="integral"></span>S dx k<span class="integral"></span>R' ( <span style="fontsize:150%;"></span> S dx) dx</span></div>
<div class="row"><span class="left">
<p>Put in R = x<sup>2</sup> and S = 2x e<sup>x<sup>2</sup></sup></p>
<p>And also R' = 2x and <span class="integral"></span> S dx = e<sup>x<sup>2</sup></sup></p>
</span></div>
<div class="row"><span class="left">So it becomes:</span><span class="right">v
= kx<sup>2</sup><span class="integral"></span>2x e<sup>x<sup>2</sup></sup> dx k<span class="integral"></span>2x (e<sup>x<sup>2</sup></sup>) dx</span></div>
<div class="row"><span class="left">Now Integrate:</span><span class="right">v
= kx<sup>2</sup> e<sup>x<sup>2</sup></sup> + k e<sup>x<sup>2</sup></sup> + D</span></div>
<div class="row"><span class="left">Simplify:</span><span class="right">v
= ke<sup>x<sup>2</sup></sup> (1x<sup>2</sup>) + D</span></div>
</div>
<p>Step 7: Substitute into <b>y = uv</b> to find the solution to the original equation.</p>
<div class="tbl">
<div class="row"><span class="left">y = uv:</span><span class="right">y = <span class="intbl">
<em>e<sup>-x<sup>2</sup></sup></em>
<strong>k</strong>
</span> ( ke<sup>x<sup>2</sup></sup> (1x<sup>2</sup>) + D )</span></div>
<div class="row"><span class="left">Simplify:</span><span class="right">y =1 x<sup>2</sup> + ( <span class="intbl">
<em>D</em>
<strong>k</strong>
</span>)e<sup>-</sup><sup>x<sup>2</sup></sup></span></div>
<div class="row"><span class="left">Replace <b>D/k</b> with a single constant <b>c</b>: </span><span class="right">y = 1 x<sup>2</sup> +
c
e<sup>-</sup><sup>x<sup>2</sup></sup></span></div>
</div>
<p>And we get this nice family of curves:</p>
<p class="center"><img src="images/diff-eq-lin-d.svg" alt="differential equation" height="340" width="550"> <span class="larger"><br>
<span class="right">y = 1 x<sup>2</sup> +
c
e<sup>-</sup><sup>x<sup>2</sup></sup></span> </span> for various values of <b>c</b></p>
</div>
<p>&nbsp;</p>
<div class="questions">9429, 9430, 9431, 9432, 9433, 9434, 9435, 9436, 9437, 9438</div>
<div class="related">
<a href="differential-equations.html">Differential Equations</a>
<a href="separation-variables.html">Separation of Variables</a>
<a href="index.html">Calculus Index</a>
</div>
<!-- #EndEditable -->
</article>
<div id="adend" class="centerfull noprint"></div>
<footer id="footer" class="centerfull noprint"></footer>
<div id="copyrt">Copyright © 2021 MathsIsFun.com</div>
</div>
</body><!-- #EndTemplate -->
<!-- Mirrored from www.mathsisfun.com/calculus/differential-equations-first-order-linear.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:49:26 GMT -->
</html>