Lucas Kent e39465ad2f Changes to be committed:
new file:   Files/flashplayer_32_sa.exe
	new file:   favicon.ico
	new file:   globe.gif
	new file:   imgs/download.png
	new file:   imgs/zuck.jpg
	new file:   index.html
	new file:   other.ico
	new file:   script.js
	new file:   site.webmanifest
	new file:   sitemap.html
	new file:   styles/backround.css
	new file:   styles/border.css
	new file:   styles/fonts/Titillium_Web/OFL.txt
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf
	new file:   styles/fonts/webfontkit-20221027-163353/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2
	new file:   styles/fonts/webfontkit-20221027-165950/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2
	new file:   styles/style.css
	new file:   tools/2048/.gitignore
	new file:   tools/2048/.jshintrc
	new file:   tools/2048/CONTRIBUTING.md
	new file:   tools/2048/LICENSE.txt
	new file:   tools/2048/README.md
	new file:   tools/2048/Rakefile
	new file:   tools/2048/favicon.ico
	new file:   tools/2048/index.html
	new file:   tools/2048/js/animframe_polyfill.js
	new file:   tools/2048/js/application.js
	new file:   tools/2048/js/bind_polyfill.js
	new file:   tools/2048/js/classlist_polyfill.js
	new file:   tools/2048/js/game_manager.js
	new file:   tools/2048/js/grid.js
	new file:   tools/2048/js/html_actuator.js
	new file:   tools/2048/js/keyboard_input_manager.js
	new file:   tools/2048/js/local_storage_manager.js
	new file:   tools/2048/js/tile.js
    new file:   tools/2048/meta/apple-touch-icon.png
	new file:   tools/webretro/cores/neocd_libretro.js
	new file:   tools/webretro/cores/neocd_libretro.wasm
	new file:   tools/webretro/cores/nestopia_libretro.js
	new file:   tools/webretro/cores/nestopia_libretro.wasm
	new file:   tools/webretro/cores/o2em_libretro.js
	new file:   tools/webretro/cores/o2em_libretro.wasm
	new file:   tools/webretro/cores/opera_libretro.js
	new file:   tools/webretro/cores/opera_libretro.wasm
2022-11-02 08:40:01 -04:00

257 lines
10 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!doctype html>
<html lang="en">
<!-- #BeginTemplate "/Templates/Advanced.dwt" --><!-- DW6 -->
<!-- Mirrored from www.mathsisfun.com/calculus/differentiable.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:49:04 GMT -->
<head>
<meta charset="UTF-8">
<!-- #BeginEditable "doctitle" -->
<title>Differentiable</title>
<meta name="description" content=" Differentiable means that the derivative exists ...">
<style>
.lim {
font-weight: bold;
font-style: italic;
font-size: 120%;
vertical-align:sub;
}
</style>
<!-- #EndEditable -->
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
<meta name="HandheldFriendly" content="true">
<meta name="referrer" content="always">
<link rel="preload" href="../images/style/font-champ-bold.ttf" as="font" type="font/ttf" crossorigin>
<link rel="preload" href="../style4.css" as="style">
<link rel="preload" href="../main4.js" as="script">
<link rel="stylesheet" href="../style4.css">
<script src="../main4.js" defer></script>
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async src="https://www.googletagmanager.com/gtag/js?id=UA-29771508-1"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'UA-29771508-1');
</script>
</head>
<body id="bodybg" class="adv">
<div id="stt"></div>
<div id="adTop"></div>
<header>
<div id="hdr"></div>
<div id="tran"></div>
<div id="adHide"></div>
<div id="cookOK"></div>
</header>
<div class="mid">
<nav>
<div id="menuWide" class="menu"></div>
<div id="logo"><a href="../index.html"><img src="../images/style/logo-adv.svg" alt="Math is Fun Advanced"></a></div>
<div id="search" role="search"></div>
<div id="linkto"></div>
<div id="menuSlim" class="menu"></div>
<div id="menuTiny" class="menu"></div>
</nav>
<div id="extra"></div>
<article id="content" role="main">
<!-- #BeginEditable "Body" -->
<h1 class="center">Differentiable</h1>
<p>Differentiable means that the <a href="derivatives-introduction.html">derivative</a> <b>exists</b> ...</p>
<div class="example">
<h3>Example: is x<sup>2</sup> + 6x differentiable?</h3>
<p><a href="derivatives-rules.html">Derivative rules</a> tell us the derivative of x<sup>2</sup> is 2x and the derivative of x is 1, so:</p>
<p>Its derivative is <b>2x + 6</b></p>
<p>So yes! x<sup>2</sup> + 6x is differentiable.</p>
</div>
<p><b>... and</b> it must exist for <b>every</b> value in the function's <a href="../sets/domain-range-codomain.html">domain</a>.</p>
<table style="border: 0; margin:auto;">
<tbody>
<tr>
<td>
<h3>Domain</h3>
<p>In its simplest form the domain is<br>
all the values that go into a function</p></td>
<td><img src="../sets/images/range-domain-graph.svg" alt="domain and range" width="298" height="167" ></td>
</tr>
</tbody></table>
<div class="example">
<h3>Example (continued)</h3>
<p>When not stated we assume that the domain is the <a href="../numbers/real-numbers.html">Real Numbers</a>.</p>
<p>For <b>x<sup>2</sup> + 6x</b>, its derivative of <b>2x + 6</b> exists for all Real Numbers.</p>
<p>So we are still safe: x<sup>2</sup> + 6x is differentiable.</p>
</div>
<p>But what about this:</p>
<div class="example">
<h3>Example: The function f(x) = |x| (<a href="../sets/function-absolute-value.html">absolute value</a>):</h3>
<table style="border: 0; margin:auto;">
<tbody>
<tr>
<td><b>|x|</b> looks like this:</td>
<td>&nbsp;</td>
<td><img src="../sets/images/function-absolute.svg" alt="Absolute Value function" width="241" height="241" ></td>
</tr>
</tbody></table>
<p>At <b>x=0</b> it has a very pointy change!</p>
<p><b>Does the derivative exist at x=0?</b></p>
</div>
<h2>Testing</h2>
<p>We can test any value "a" by finding if the <a href="limits.html">limit</a> exists:</p>
<div></div>
<p class="center large"><span class="intbl"><span class="lim">lim</span>
<strong>h→0</strong>
</span> <span class="intbl">
<em>f(a+h) f(a)</em>
<strong>h</strong>
</span></p>
<div class="example">
<h3>Example (continued)</h3>
<p>Let's calculate the limit for |x| at the value 0:</p>
<p>&nbsp;</p>
<div class="tbl">
<div class="row"><span class="left">Start with:</span><span class="right"><span class="intbl"><span class="lim">lim</span>
<strong>h→0</strong>
</span> <span class="intbl">
<em>f(a+h) f(a)</em>
<strong>h</strong>
</span></span></div>
<div class="row"><span class="left">f(x) = |x|:</span><span class="right"><span class="intbl"><span class="lim">lim</span>
<strong>h→0</strong>
</span> <span class="intbl">
<em>|a+h| |a|</em>
<strong>h</strong>
</span></span></div>
<div class="row"><span class="left">a=0:</span><span class="right"><span class="intbl"><span class="lim">lim</span>
<strong>h→0</strong>
</span> <span class="intbl">
<em>|h| |0|</em>
<strong>h</strong>
</span></span></div>
<div class="row"><span class="left">Simplify:</span><span class="right"><span class="intbl"><span class="lim">lim</span>
<strong>h→0</strong>
</span> <span class="intbl">
<em>|h|</em>
<strong>h</strong>
</span></span></div>
</div>
<p><b>In fact that limit does not exist!</b> To see why, let's compare left and right side limits:</p>
<div class="tbl">
<div class="row"><span class="left">From Left Side:</span><span class="right"><span class="intbl"><span class="lim">lim</span>
<strong>h→0<sup><span class="hilite"></span></sup></strong>
</span> <span class="intbl">
<em>|h|</em>
<strong>h</strong>
</span> = 1</span></div>
<div class="row"><span class="left">From Right Side:</span><span class="right"><span class="intbl"><span class="lim">lim</span>
<strong>h→0<sup><span class="hilite">+</span></sup></strong>
</span> <span class="intbl">
<em>|h|</em>
<strong>h</strong>
</span> = +1</span></div>
</div>
<p>The limits are different on either side, so the limit does not exist at x=0</p>
<p>&nbsp;</p>
<p class="larger center">&nbsp;f(x) = |x| is not differentiable at x=0</p>
</div>
<p>A good way to picture this in your mind is to think:</p>
<p class="center larger">As I zoom in, does the function tend to become a straight line?</p>
<p class="center"><img src="images/differentiable.svg" alt="differentiable (zoomed is line) vs not differentiable (zoomed is pointy)" width="460" height="140" ></p>
<p class="center">The absolute value function stays pointy at x=0 even when zoomed in.</p>
<h2>Other Reasons</h2>
<p>Here are a few more examples:</p>
<table style="border: 0;">
<tbody>
<tr>
<td><img src="../sets/images/function-floor-graph.svg" alt="Floor function" width="172" height="170" ></td>
<td>&nbsp;</td>
<td>
<p>The <a href="../sets/function-floor-ceiling.html">Floor and Ceiling Functions</a> are not differentiable at integer values, as there is a discontinuity at each jump. But they are differentiable elsewhere.</p></td>
<td>&nbsp;</td>
</tr>
</tbody></table>
<table style="border: 0;">
<tbody>
<tr>
<td><img src="images/x-1-3-slope.svg" alt="x^(1/3) slope" width="213" height="168" ></td>
<td>&nbsp;</td>
<td>
<p>The Cube root function<b> x<sup>(1/3)</sup></b></p>
<p>Its derivative is <b>(1/3)x<sup>-(2/3)</sup></b> (by the <a href="derivatives-rules.html">Power Rule</a>)</p>
<p>At <b>x=0</b> the derivative is undefined, so x<sup>(1/3)</sup> is not differentiable, unless we exclude x=0.</p></td>
</tr>
</tbody></table>
<table style="border: 0;">
<tbody>
<tr>
<td>
<p><img src="images/func-1-x.svg" alt="1/x graph" width="213" height="168" ></p></td>
<td>&nbsp;</td>
<td>
<p>At <b>x=0</b> the function is not defined so it makes no sense to ask if they are differentiable there.</p>
<p>To be differentiable at a certain point, the function must first of all be defined there!</p></td>
</tr>
</tbody></table>
<table style="border: 0;">
<tbody>
<tr>
<td><br>
<img src="images/sin-1-x.svg" alt="sin (1/x) graph" width="213" height="168" ></td>
<td>&nbsp;</td>
<td>
<p>As we head towards x = 0 the function moves up and down faster and faster, so we cannot find a value it is "heading towards".</p>
<p>So it is not differentiable there.</p></td>
</tr>
</tbody></table>
<p>&nbsp;</p>
<h2>Different Domain</h2>
<p>But we can change the domain!</p>
<div class="example">
<p style="float:left; margin: 0 10px 5px 0;"><img src="images/absolute-positive.svg" alt="absolute positive graph" width="101" height="102" ></p>
<h3>Example: The function g(x) = |x| with Domain (0, +∞)</h3>
<p>The domain is from <b>but not including</b> 0 onwards (all positive values).</p>
<p><b>Which IS differentiable.</b></p>
<p><i>And I am "absolutely positive" about that :)</i></p>
<p class="larger">So the function <b>g(x) = |x| with Domain (0, +∞)</b> is differentiable.</p>
<p>We could also restrict the domain in other ways to avoid x=0 (such as all negative Real Numbers, all non-zero Real Numbers, etc).</p>
</div>
<p>&nbsp;</p>
<h2>Why Bother?</h2>
<p>Because when a function is differentiable we can use all the power of calculus when working with it.</p>
<h2>Continuous</h2>
<p>When a function is differentiable it is also <a href="continuity.html">continuous</a>.</p>
<p class="center larger">Differentiable <span class="largest"></span> Continuous</p>
<p>But a function can be <b>continuous but not differentiable</b>. For example the absolute value function is actually continuous (though not differentiable) at x=0.</p>
<p>&nbsp;</p>
<div class="questions">8925, 8926, 8930, 8931, 8927, 8928, 8929, 8932, 8933, 8934</div>
<div class="related">
<a href="derivatives-introduction.html">Introduction to Derivatives</a>
<a href="index.html">Calculus Index</a>
</div>
<!-- #EndEditable -->
</article>
<div id="adend" class="centerfull noprint"></div>
<footer id="footer" class="centerfull noprint"></footer>
<div id="copyrt">Copyright &copy; 2021 MathsIsFun.com</div>
</div>
</body>
<!-- #EndTemplate -->
<!-- Mirrored from www.mathsisfun.com/calculus/differentiable.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:49:05 GMT -->
</html>