Lucas Kent e39465ad2f Changes to be committed:
new file:   Files/flashplayer_32_sa.exe
	new file:   favicon.ico
	new file:   globe.gif
	new file:   imgs/download.png
	new file:   imgs/zuck.jpg
	new file:   index.html
	new file:   other.ico
	new file:   script.js
	new file:   site.webmanifest
	new file:   sitemap.html
	new file:   styles/backround.css
	new file:   styles/border.css
	new file:   styles/fonts/Titillium_Web/OFL.txt
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf
	new file:   styles/fonts/webfontkit-20221027-163353/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2
	new file:   styles/fonts/webfontkit-20221027-165950/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2
	new file:   styles/style.css
	new file:   tools/2048/.gitignore
	new file:   tools/2048/.jshintrc
	new file:   tools/2048/CONTRIBUTING.md
	new file:   tools/2048/LICENSE.txt
	new file:   tools/2048/README.md
	new file:   tools/2048/Rakefile
	new file:   tools/2048/favicon.ico
	new file:   tools/2048/index.html
	new file:   tools/2048/js/animframe_polyfill.js
	new file:   tools/2048/js/application.js
	new file:   tools/2048/js/bind_polyfill.js
	new file:   tools/2048/js/classlist_polyfill.js
	new file:   tools/2048/js/game_manager.js
	new file:   tools/2048/js/grid.js
	new file:   tools/2048/js/html_actuator.js
	new file:   tools/2048/js/keyboard_input_manager.js
	new file:   tools/2048/js/local_storage_manager.js
	new file:   tools/2048/js/tile.js
    new file:   tools/2048/meta/apple-touch-icon.png
	new file:   tools/webretro/cores/neocd_libretro.js
	new file:   tools/webretro/cores/neocd_libretro.wasm
	new file:   tools/webretro/cores/nestopia_libretro.js
	new file:   tools/webretro/cores/nestopia_libretro.wasm
	new file:   tools/webretro/cores/o2em_libretro.js
	new file:   tools/webretro/cores/o2em_libretro.wasm
	new file:   tools/webretro/cores/opera_libretro.js
	new file:   tools/webretro/cores/opera_libretro.wasm
2022-11-02 08:40:01 -04:00

314 lines
14 KiB
HTML

<!DOCTYPE html>
<html lang="en"><!-- #BeginTemplate "/Templates/Advanced.dwt" --><!-- DW6 -->
<!-- Mirrored from www.mathsisfun.com/algebra/trig-sine-law.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 01:02:57 GMT -->
<head>
<meta http-equiv="content-type" content="text/html; charset=utf-8">
<!-- #BeginEditable "doctitle" -->
<title>The Law of Sines</title>
<meta name="Description" content="Math explained in easy language, plus puzzles, games, quizzes, worksheets and a forum. For K-12 kids, teachers and parents.">
<script language="JavaScript" type="text/javascript">
Author = 'Gates, Les and Pierce, Rod';
</script>
<!-- #EndEditable -->
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
<meta name="HandheldFriendly" content="true">
<meta name="referrer" content="always">
<link rel="stylesheet" type="text/css" href="../style3.css">
<script src="../main3.js"></script>
</head>
<body id="bodybg" class="adv">
<div class="bg">
<div id="stt"></div>
<div id="hdr"></div>
<div id="logo"><a href="../index.html"><img src="../images/style/logo.svg" alt="Math is Fun"></a></div>
<div id="advText">Advanced</div>
<div id="gtran">
<script>document.write(getTrans());</script>
</div>
<div id="adTopOuter" class="centerfull noprint">
<div id="adTop">
<script>document.write(getAdTop());</script>
</div>
</div>
<div id="adHide">
<div id="showAds1"><a href="javascript:showAds()">Show Ads</a></div>
<div id="hideAds1"><a href="javascript:hideAds()">Hide Ads</a><br>
<a href="../about-ads.html">About Ads</a></div>
</div>
<div id="menuWide" class="menu">
<script>document.write(getMenu(0));</script>
</div>
<div id="linkto">
<div id="linktort">
<script>document.write(getLinks());</script>
</div>
</div>
<div id="search" role="search">
<script>document.write(getSearch());</script>
</div>
<div id="menuSlim" class="menu">
<script>document.write(getMenu(1));</script>
</div>
<div id="menuTiny" class="menu">
<script>document.write(getMenu(2));</script>
</div>
<div id="extra"></div>
</div>
<div id="content" role="main">
<!-- #BeginEditable "Body" -->
<h1 class="center">The Law of Sines</h1>
<p><b>The Law of Sines </b>(or<b> Sine Rule</b>) is very useful for solving triangles:</p>
<p class="center large"><span class="intbl">
<em>a</em>
<strong>sin A</strong>
</span> = <span class="intbl">
<em>b</em>
<strong>sin B</strong>
</span> = <span class="intbl">
<em>c</em>
<strong>sin C</strong>
</span></p>
<p>It works for any triangle:</p>
<table style="border: 0; margin:auto;">
<tbody>
<tr align="center">
<td><img src="images/triangle-sides-angles.svg" alt="triangle"></td>
<td>
<p><b>a</b>, <b>b</b> and <b>c</b> are sides.</p>
<p><b>A</b>, <b>B</b> and <b>C</b> are angles.</p>
<p><i>(Side a faces angle A,<br>
side b
faces angle B and<br>
side c faces angle C).</i></p>
</td>
</tr>
</tbody></table>
<p>And it says that:</p>
<p class="center">When we <b>divide side a by the sine of angle A</b><br>
it is equal to <b>side b divided by the sine of angle B</b>,<br>
and also equal to <b>side c divided by the sine of angle C</b></p>
<h2>Sure ... ?</h2>
<p>Well, let's do the calculations for a triangle I prepared earlier:</p>
<table style="border: 0; margin:auto;">
<tbody>
<tr>
<td><img src="images/trig-5-8-9.gif" alt="5,8,9 Triangle" height="126" width="212"></td>
<td>
<p class="center larger"><span class="intbl">
<em>a</em>
<strong>sin A</strong>
</span> = <span class="intbl">
<em>8</em>
<strong>sin(62.2&deg;)</strong>
</span> = <span class="intbl">
<em>8</em>
<strong>0.885...</strong>
</span> = <b>9.04...</b></p>
<p class="center larger"><span class="intbl">
<em>b</em>
<strong>sin B</strong>
</span> = <span class="intbl">
<em>5</em>
<strong>sin(33.5&deg;)</strong>
</span> = <span class="intbl">
<em>5</em>
<strong>0.552...</strong>
</span> = <b>9.06...</b></p>
<p class="center larger"><span class="intbl">
<em>c</em>
<strong>sin C</strong>
</span> = <span class="intbl">
<em>9</em>
<strong>sin(84.3&deg;)</strong>
</span> = <span class="intbl">
<em>9</em>
<strong>0.995...</strong>
</span> = <b>9.04...</b></p>
</td>
</tr>
</tbody></table>
<p class="center">The answers are <b>almost the same!</b><br>
<i>(They would be <b>exactly</b> the same if we used perfect accuracy).</i></p>
<p>So now you can see that:</p>
<p class="center large"><span class="intbl">
<em>a</em>
<strong>sin A</strong>
</span> = <span class="intbl">
<em>b</em>
<strong>sin B</strong>
</span> = <span class="intbl">
<em>c</em>
<strong>sin C</strong>
</span></p>
<div class="fun">
<h3>Is This Magic?</h3>
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/triangle-law-sines.svg" alt="triangle a b c"></p>
<p>Not really, look at this general triangle and imagine it is two right-angled triangles sharing the side <b>h</b>:</p>
<p>&nbsp;</p>
<p>The <a href="../sine-cosine-tangent.html">sine of an angle</a> is the opposite divided by the hypotenuse, so:</p>
<p style="float:left; margin: 0 30px 5px 0;"><img src="images/sin-divide.svg" alt="triangle a b c"></p>
<table style="border: 0;">
<tbody>
<tr valign="top">
<td align="right">sin(A) = h/b</td>
<td><span style="float:right; margin: 0 0 5px 10px;"><img src="../images/style/so.svg" alt="so symbol"></span></td>
<td align="left">&nbsp;</td>
<td align="left"> b sin(A) = h</td>
</tr>
<tr valign="top">
<td align="right">sin(B) = h/a</td>
<td><span style="float:right; margin: 0 0 5px 10px;"><img src="../images/style/so.svg" alt="so symbol"></span></td>
<td align="left">&nbsp;</td>
<td align="left">a sin(B) = h</td>
</tr>
</tbody></table>
<div style="clear:both"></div>
<p><b>a sin(B)</b> and <b>b sin(A)</b> both equal <b>h</b>, so we get:</p>
<p class="center larger">a sin(B) = b sin(A)</p>
<p>Which can be rearranged to:</p>
<p class="center larger"><span class="intbl">
<em>a</em>
<strong>sin A</strong>
</span> = <span class="intbl">
<em>b</em>
<strong>sin B</strong>
</span></p>
<p>We can follow similar steps to include c/sin(C)</p>
</div>
<h2>How Do We Use It?</h2>
<p>Let us see an example:</p>
<div class="example">
<h3>Example: Calculate side "c"</h3>
<p class="center"><img src="images/trig-sineruleex1.gif" alt="triangle 35 degrees, 105 degrees, 7"></p>
<div class="tbl">
<div class="row"><span class="left">Law of Sines:</span><span class="right">a/sin A = b/sin B = c/sin C</span></div>
<div class="row"><span class="left">Put in the values we know:</span><span class="right">a/sin A = 7/sin(35&deg;) = c/sin(105&deg;)</span></div>
<div class="row"><span class="left">Ignore a/sin A (not useful to us):</span><span class="right">7/sin(35&deg;) = c/sin(105&deg;)</span></div>
<p>Now we use our algebra skills to rearrange and solve:</p>
<div class="row"><span class="left">Swap sides:</span><span class="right">c/sin(105&deg;) = 7/sin(35&deg;)</span></div>
<div class="row"><span class="left">Multiply both sides by sin(105&deg;):</span><span class="right">c = ( 7 / sin(35&deg;) ) &times; sin(105&deg;)</span></div>
<div class="row"><span class="left">Calculate:</span><span class="right">c = ( 7 / 0.574... ) &times; 0.966...</span></div>
<div class="row"><span class="left">&nbsp;</span><span class="right">c = <b>11.8</b> (to 1 decimal place)</span></div>
</div>
</div>
<h2>Finding an Unknown Angle</h2>
<p>In the previous example we found an unknown side ...</p>
<p class="center">... but we can also use the Law of Sines to find an <b>unknown angle</b>.</p>
<p>In this case it is best to turn the fractions upside down (<b>sin A/a</b> instead of <b>a/sin A</b>, etc):</p>
<p class="center large"><span class="intbl">
<em>sin A</em>
<strong>a</strong>
</span> = <span class="intbl">
<em>sin B</em>
<strong>b</strong>
</span> = <span class="intbl">
<em>sin C</em>
<strong>c</strong>
</span></p>
<div class="example">
<h3>Example: Calculate angle B</h3>
<p class="center"><img src="images/trig-sineruleex2.gif" alt="triangle 63 degrees, 4.7, 5.5"></p>
<div class="tbl">
<div class="row"><span class="left">Start with:</span><span class="right">sin A / a = sin B / b = sin C / c</span></div>
<div class="row"><span class="left">Put in the values we know:</span><span class="right">sin A / a = sin B / 4.7 = sin(63&deg;) / 5.5</span></div>
<div class="row"><span class="left">Ignore "sin A / a":</span><span class="right">sin B / 4.7 = sin(63&deg;) / 5.5</span></div>
<div class="row"><span class="left">Multiply both sides by 4.7:</span><span class="right">sin B = (sin(63&deg;)/5.5) &times; 4.7 </span></div>
<div class="row"><span class="left">Calculate:</span><span class="right">sin B = 0.7614... </span></div>
<div class="row"><span class="left">Inverse Sine:</span><span class="right">B = sin<sup>&minus;1</sup>(0.7614...) </span></div>
<div class="row"><span class="left">&nbsp;</span><span class="right">B = <b>49.6&deg;</b></span></div>
</div>
</div>
<h2>Sometimes There Are Two Answers !</h2>
<p>There is one <b>very</b> tricky thing we have to look out for:</p>
<p class="center large">Two possible answers.</p>
<table style="border: 0;">
<tbody>
<tr>
<td><img src="images/trig-sine-law-ambig.gif" alt="Sine Law Ambiguous Case" height="140" width="210"></td>
<td>
<p>Imagine we know angle <b>A</b>, and sides <b>a</b> and <b>b</b>.</p>
<p>We can swing side <b>a</b> to left or right and come up with two possible results (a small triangle and a much wider triangle)</p>
<p class="center">Both answers are right!</p>
</td>
<td>&nbsp;</td>
</tr>
</tbody></table>
<p>This only happens in the "<a href="trig-solving-ssa-triangles.html">Two Sides and
an Angle <b>not</b> between</a>" case, and even then not always, but we have to watch out for it.</p>
<p>Just think "could I swing that side the other way to also make a correct answer?"</p>
<p>&nbsp;</p>
<div class="example">
<h3>Example: Calculate angle R</h3>
<p class="center"><img src="images/trig-sineruleex3a.gif" alt="triangle 39 degrees, 41, 28"></p>
<p>The first thing to notice is that this triangle has different labels: PQR instead of ABC. But that's OK. We just use P,Q and R instead of A, B and C in The Law of Sines.</p>
<div class="tbl">
<div class="row"><span class="left">Start with:</span><span class="right">sin R / r = sin Q / q</span></div>
<div class="row"><span class="left">Put in the values we know:</span><span class="right">sin R / 41 = sin(39&deg;)/28</span></div>
<div class="row"><span class="left">Multiply both sides by 41:</span><span class="right">sin R = (sin(39&deg;)/28) &times; 41 </span></div>
<div class="row"><span class="left">Calculate:</span><span class="right">sin R = 0.9215...</span></div>
<div class="row"><span class="left">Inverse Sine:</span><span class="right">R = sin<sup>&minus;1</sup>(0.9215...) </span></div>
<div class="row"><span class="left">&nbsp;</span><span class="right">R = <b>67.1&deg;</b></span></div>
</div>
</div>
<p>But wait! There's another angle that also has a sine equal to 0.9215...</p>
<p><b>The calculator won't tell you this</b> but sin(112.9&deg;) is also equal to 0.9215...</p>
<p>So, how do we discover the value 112.9&deg;?</p>
<p>Easy ... take 67.1&deg; away from 180&deg;, like this:</p>
<p class="center large">180&deg; &minus; 67.1&deg; = 112.9&deg;</p>
<div class="example">
<p>So there are two possible answers for R: <b>67.1&deg;</b> and <b>112.9&deg;</b>:</p>
<p src="images/trig-sineruleex3b.gif" align="center"><img src="images/trig-sineruleex3b.gif" alt="trig sine rule two angles example"></p>
<p class="center">Both are possible! Each one has the 39&deg; angle, and sides of 41 and 28.</p>
</div>
<p class="center large">So, always check to see whether the alternative answer makes sense.</p>
<ul>
<li>... sometimes it will (like above) and there are<b> two solutions</b></li>
<li>... sometimes it won't (see below) and there is <b>one solution</b></li>
</ul>
<table style="border: 0;">
<tbody>
<tr>
<td><img src="images/trig-sineruleex2a.gif" alt="trig sine rule one angle example" height="155" width="214"></td>
<td>
<p>We looked at this triangle before.</p>
<p>As you can see, you can try swinging the "5.5" line around, but no other solution makes sense.</p>
<p>So this has only one solution.</p>
</td>
</tr>
</tbody></table>
<p>&nbsp;</p>
<div class="questions">
<script>
getQ(252, 1508, 1509, 1510, 1511, 253, 2382, 2383, 3936, 3937);
</script>&nbsp; </div>
<div class="related">
<a href="trig-cosine-law.html">The Law of Cosines</a>
<a href="trig-solving-triangles.html">Solving Triangles</a>
<a href="trigonometry-index.html">Trigonometry Index</a>
<a href="index.html">Algebra Index</a>
</div>
<!-- #EndEditable -->
</div>
<div id="adend" class="centerfull noprint">
<script>document.write(getAdEnd());</script>
</div>
<div id="footer" class="centerfull noprint">
<script>document.write(getFooter());</script>
</div>
<div id="copyrt">
Copyright &copy; 2020 MathsIsFun.com
</div>
<script>document.write(getBodyEnd());</script>
</body>
<!-- Mirrored from www.mathsisfun.com/algebra/trig-sine-law.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 01:02:58 GMT -->
</html>