Lucas Kent e39465ad2f Changes to be committed:
new file:   Files/flashplayer_32_sa.exe
	new file:   favicon.ico
	new file:   globe.gif
	new file:   imgs/download.png
	new file:   imgs/zuck.jpg
	new file:   index.html
	new file:   other.ico
	new file:   script.js
	new file:   site.webmanifest
	new file:   sitemap.html
	new file:   styles/backround.css
	new file:   styles/border.css
	new file:   styles/fonts/Titillium_Web/OFL.txt
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf
	new file:   styles/fonts/webfontkit-20221027-163353/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2
	new file:   styles/fonts/webfontkit-20221027-165950/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2
	new file:   styles/style.css
	new file:   tools/2048/.gitignore
	new file:   tools/2048/.jshintrc
	new file:   tools/2048/CONTRIBUTING.md
	new file:   tools/2048/LICENSE.txt
	new file:   tools/2048/README.md
	new file:   tools/2048/Rakefile
	new file:   tools/2048/favicon.ico
	new file:   tools/2048/index.html
	new file:   tools/2048/js/animframe_polyfill.js
	new file:   tools/2048/js/application.js
	new file:   tools/2048/js/bind_polyfill.js
	new file:   tools/2048/js/classlist_polyfill.js
	new file:   tools/2048/js/game_manager.js
	new file:   tools/2048/js/grid.js
	new file:   tools/2048/js/html_actuator.js
	new file:   tools/2048/js/keyboard_input_manager.js
	new file:   tools/2048/js/local_storage_manager.js
	new file:   tools/2048/js/tile.js
    new file:   tools/2048/meta/apple-touch-icon.png
	new file:   tools/webretro/cores/neocd_libretro.js
	new file:   tools/webretro/cores/neocd_libretro.wasm
	new file:   tools/webretro/cores/nestopia_libretro.js
	new file:   tools/webretro/cores/nestopia_libretro.wasm
	new file:   tools/webretro/cores/o2em_libretro.js
	new file:   tools/webretro/cores/o2em_libretro.wasm
	new file:   tools/webretro/cores/opera_libretro.js
	new file:   tools/webretro/cores/opera_libretro.wasm
2022-11-02 08:40:01 -04:00

217 lines
13 KiB
HTML

<!doctype html>
<html lang="en"><!-- #BeginTemplate "/Templates/Advanced.dwt" --><!-- DW6 -->
<!-- Mirrored from www.mathsisfun.com/algebra/trig-cosine-law.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 01:02:56 GMT -->
<head>
<!-- #BeginEditable "doctitle" -->
<title>The Law of Cosines</title>
<meta name="Description" content="Math explained in easy language, plus puzzles, games, quizzes, worksheets and a forum. For K-12 kids, teachers and parents." />
<script language="JavaScript" type="text/javascript">
Author = 'Gates, Les and Pierce, Rod';
</script>
<style type="text/css">
<!-- .style1 {
color: #9900CC
}
-->
</style>
<!-- #EndEditable -->
<meta name="keywords" content="math, maths, mathematics, school, homework, education" />
<meta http-equiv="content-type" content="text/html; charset=utf-8" />
<meta name="viewport" content="width=device-width; initial-scale=1.0; user-scalable=true;" />
<meta name="HandheldFriendly" content="true"/>
<meta http-equiv="pics-label" content='(PICS-1.1 "http://www.classify.org/safesurf/" L gen true for "http://www.mathsisfun.com" r (SS~~000 1))' />
<link rel="stylesheet" type="text/css" href="../style3.css" />
<script src="../main3.js" type="text/javascript"></script>
</head>
<body id="bodybg" class="adv">
<div class="bg">
<div id="stt"></div>
<div id="hdr"></div>
<div id="logo"><a href="../index.html"><img src="../images/style/logo.svg" alt="Math is Fun" /></a></div>
<div id="advText">Advanced</div>
<div id="gtran"><script type="text/javascript">document.write(getTrans());</script></div>
<div id="gplus"><script type="text/javascript">document.write(getGPlus());</script></div>
<div id="adTopOuter" class="centerfull noprint">
<div id="adTop">
<script type="text/javascript">document.write(getAdTop());</script>
</div>
</div>
<div id="adHide">
<div id="showAds1"><a href="javascript:showAds()">Show Ads</a></div>
<div id="hideAds1"><a href="javascript:hideAds()">Hide Ads</a><br>
<a href="../about-ads.html">About Ads</a></div>
</div>
<div id="menuWide" class="menu">
<script type="text/javascript">document.write(getMenu(0));</script>
</div>
<div id="linkto">
<div id="linktort"><script type="text/javascript">document.write(getLinks());</script></div>
</div>
<div id="search" role="search"><script type="text/javascript">document.write(getSearch());</script></div>
<div id="menuSlim" class="menu">
<script type="text/javascript">document.write(getMenu(1));</script>
</div>
<div id="menuTiny" class="menu">
<script type="text/javascript">document.write(getMenu(2));</script>
</div>
<div id="extra"></div>
</div>
<div id="content" role="main"><!-- #BeginEditable "Body" -->
<h1 align="center">The Law of Cosines</h1>
<p>&nbsp;</p>
<p>For any triangle:</p>
<table border="0" align="center">
<tr align="center">
<td><img src="images/triangle-sides-angles.svg" alt="triangle angles A,B,C and sides a,b,c" /></td>
<td>
<p><b>a</b>, <b>b</b> and <b>c</b> are sides. </p>
<p><b>C</b> is the angle opposite side c</p>
</td>
</tr>
</table>
<p><b>The Law of Cosines</b> (also called the <b>Cosine Rule</b>) says:</p>
<p class="center large">c<sup>2</sup> = a<sup>2</sup> + b<sup>2</sup> &minus; 2ab cos(C)</p>
<p>It helps us solve some triangles. Let's see how to use it.</p>
<div class="example">
<h3>Example: How long is side &quot;c&quot; ... ? </h3>
<p align="center"><img src="images/trig-cosruleex1.gif" alt="trig cos rule example" /></p>
<p align="center">We know angle C = 37º, and sides a = 8 and b = 11</p>
<div class="tbl">
<div class="row"><span class="left"><b>The Law of Cosines</b> says:</span><span class="right">c<sup>2</sup> = a<sup>2</sup> + b<sup>2</sup> &minus; 2ab cos(C)</span></div>
<div class="row"><span class="left">Put in the values we know:</span><span class="right">c<sup>2</sup> = 8<sup>2</sup> + 11<sup>2</sup> &minus; 2 &times; 8 &times; 11 &times; cos(37º)</span></div>
<div class="row"><span class="left">Do some calculations:</span><span class="right">c<sup>2</sup> = 64 + 121 &minus; 176 &times; 0.798…</span></div>
<div class="row"><span class="left">More calculations:</span><span class="right">c<sup>2</sup> = 44.44...</span></div>
<div class="row"><span class="left">Take the square root:</span><span class="right">c = &radic;44.44 = <b>6.67</b> to 2 decimal places</span></div>
</div>
<p align="center" class="large">
<br />
Answer: c = 6.67</p>
</div>
<h2>How to Remember</h2>
<p>How can you remember the formula?</p>
<p>Well, it helps to know it's the <a href="../pythagoras.html">Pythagoras Theorem</a> with something extra so it works for all triangles:</p>
<div class="tbl">
<div class="row"><span class="left">Pythagoras Theorem:<br>
(only for Right-Angled Triangles)</span><span class="right"><span class="large">a<sup>2</sup> + b<sup>2</sup> = c<sup>2</sup></span></span></div>
<div class="row"><span class="left">Law of Cosines:<br>
(for all triangles)</span><span class="right"><span class="large">a<sup>2</sup> + b<sup>2</sup> <span class="style1">&minus; 2ab cos(C)</span> = c<sup>2</sup></span></span></div>
</div>
<p>So, to remember it:</p>
<ul>
<li>think &quot;<b>abc</b>&quot;: <b>a</b><sup>2</sup> + <b>b</b><sup>2</sup> = <b>c</b><sup>2</sup>, </li>
<li>then a <b>2</b>nd &quot;<b>abc</b>&quot;:<span class="style1"> <b>2ab</b> cos(<b>C</b>)</span>, </li>
<li>and put them together: <b>a<sup>2</sup> + b<sup>2</sup> &minus; 2ab cos(C) = c<sup>2</sup></b></li>
</ul>
<h2>When to Use</h2>
<p>The Law of Cosines is useful for finding:</p>
<div class="bigul">
<ul>
<li>the third side of a triangle when we know <b>two sides and the angle between</b> them (like the example above)</li>
<li>the angles of a triangle when we know <b>all three sides</b> (as in the following example)</li>
</ul>
</div>
<div class="example">
<h3>Example: What is Angle &quot;C&quot; ...?</h3>
<p align="center"><span class="example2"><img src="images/trig-cosruleex4.gif" alt="trig cos rule example" /></span></p>
<p>The side of length &quot;8&quot; is opposite angle <i><b>C</b></i>, so it is side <b>c</b>. The other two sides are <b>a</b> and <b>b</b>.</p>
<p>Now let us put what we know into <b>The Law of Cosines</b>:</p>
<div class="tbl">
<div class="row"><span class="left">Start with:</span><span class="right">c<sup>2</sup> = a<sup>2</sup> + b<sup>2</sup> &minus; 2ab cos(C)</span></div>
<div class="row"><span class="left">Put in a, b and c:</span><span class="right">8<sup>2</sup> = 9<sup>2</sup> + 5<sup>2 </sup>&minus; 2 &times; 9 &times; 5 &times; cos(C)</span></div>
<div class="row"><span class="left">Calculate:</span><span class="right">64 = 81 + 25<sup> </sup>&minus; 90 &times; cos(C)</span></div>
<p>Now we use our algebra skills to rearrange and solve: </p>
<div class="row"><span class="left">Subtract 25 from both sides:</span><span class="right">39 = 81<sup> </sup>&minus; 90 &times; cos(C)</span></div>
<div class="row"><span class="left">Subtract 81 from both sides:</span><span class="right">&minus;42 = <sup> </sup>&minus;90 &times; cos(C)</span></div>
<div class="row"><span class="left">Swap sides:</span><span class="right">&minus;90 &times; cos(C) = &minus;42 <sup> </sup></span></div>
<div class="row"><span class="left">Divide both sides by &minus;90:</span><span class="right">cos(C) = 42/90</span></div>
<div class="row"><span class="left">Inverse cosine:</span><span class="right">C = cos<sup>&minus;1</sup>(42/90)</span></div>
<div class="row"><span class="left">Calculator:</span><span class="right">C = <b>62.2&deg;</b> (to 1 decimal place)</span></div>
</div>
</div>
<h2>In Other Forms</h2>
<h3>Easier Version For Angles</h3>
<p>We just saw how to find an angle when we know three sides. It took quite a few steps, so it is easier to use the &quot;direct&quot; formula (which is just a rearrangement of the <span class="large">c<sup>2</sup> = a<sup>2</sup> + b<sup>2</sup> &minus; 2ab cos(C) </span> formula). It can be in either of these forms:</p>
<p class="center large">cos(C) = <span class="intbl">
<em>a<sup>2</sup> + b<sup>2</sup> &minus; c<sup>2</sup></em>
<strong>2ab</strong>
</span></p>
<p class="center large">cos(A) = <span class="intbl">
<em>b<sup>2</sup> + c<sup>2</sup> &minus; a<sup>2</sup></em>
<strong>2bc</strong>
</span></p>
<p class="center large">cos(B) = <span class="intbl">
<em>c<sup>2</sup> + a<sup>2</sup> &minus; b<sup>2</sup></em>
<strong>2ca</strong>
</span></p>
<div class="example">
<h3>Example: Find Angle &quot;C&quot; Using The Law of Cosines (angle version)</h3>
<p align="center"> <img src="images/trig-sssex1.gif" width="180" height="137" alt="triangle SSS" /></p>
<p>In this triangle we know the three sides:</p>
<ul>
<li>a = 8, </li>
<li>b = 6 and </li>
<li>c = 7. </li>
</ul>
<p>Use The Law of Cosines (angle version) to find angle <b>C</b> :</p>
<div class="tbl">
<div class="row"><span class="left">cos C</span><span class="right">= (a<sup>2</sup> + b<sup>2</sup> &minus; c<sup>2</sup>)/2ab </span></div>
<div class="row"><span class="left">&nbsp;</span><span class="right">= (8<sup>2</sup> + 6<sup>2</sup> &minus; 7<sup>2</sup>)/2&times;8&times;6 </span></div>
<div class="row"><span class="left">&nbsp;</span><span class="right">= (64 + 36 &minus; 49)/96 </span></div>
<div class="row"><span class="left">&nbsp;</span><span class="right">= 51/96 </span></div>
<div class="row"><span class="left">&nbsp;</span><span class="right">= 0.53125</span></div>
<div class="row"><span class="left">C</span><span class="right">= cos<sup>&minus;1</sup>(0.53125)</span></div>
<div class="row"><span class="left">&nbsp;</span><span class="right">= <b>57.9&deg;</b> to one decimal place</span></div>
</div>
</div>
<p align="center">&nbsp;</p>
<h3>Versions for a, b and c</h3>
<p>Also, we can rewrite the <span class="large">c<sup>2</sup> = a<sup>2</sup> + b<sup>2</sup> &minus; 2ab cos(C) </span> formula into <span class="large">a<sup>2</sup>=</span> and <span class="large">b<sup>2</sup>=</span> form.</p>
<p> Here are all three:</p>
<p class="center large">a<sup>2</sup> = b<sup>2</sup> + c<sup>2</sup> &minus; 2bc cos(A)</p>
<p class="center large">b<sup>2</sup> = a<sup>2</sup> + c<sup>2</sup> &minus; 2ac cos(B)</p>
<p class="center large">c<sup>2</sup> = a<sup>2</sup> + b<sup>2</sup> &minus; 2ab cos(C) </p>
<p>But it is easier to remember the &quot;<b>c<sup>2</sup></b>=&quot; form and change the letters as needed !</p>
<p>As in this example:</p>
<div class="example">
<h3>Example: Find the distance &quot;z&quot;</h3>
<p align="center"><img src="images/trig-cosruleex3.gif" alt="trig cos rule example" /></p>
<p>The letters are different! But that doesn't matter. We can easily substitute x for a, y for b and z for c</p>
<div class="tbl">
<div class="row"><span class="left">Start with:</span><span class="right">c<sup>2</sup> = a<sup>2</sup> + b<sup>2</sup> &minus; 2ab cos(C)</span></div>
<div class="row"><span class="left">x for a, y for b and z for c</span><span class="right">z<sup>2</sup> = x<sup>2</sup> + y<sup>2</sup> &minus; 2xy cos(Z)</span></div>
<div class="row"><span class="left">Put in the values we know:</span><span class="right">z<sup>2</sup> = 9.4<sup>2</sup> + 6.5<sup>2</sup> &minus; 2&times;9.4&times;6.5&times;cos(131º)</span></div>
<div class="row"><span class="left">Calculate:</span><span class="right">z<sup>2</sup> = 88.36 + 42.25 &minus; 122.2 &times; (&minus;0.656...)</span></div>
<div class="row"><span class="left">&nbsp;</span><span class="right">z<sup>2</sup> = 130.61 + 80.17...</span></div>
<div class="row"><span class="left">&nbsp;</span><span class="right">z<sup>2</sup> = 210.78...</span></div>
<div class="row"><span class="left">&nbsp;</span><span class="right">z = &radic;210.78... = <b>14.5</b> to 1 decimal place. </span></div>
</div>
<p align="center" class="large">Answer: z = 14.5 </p>
<p>Did you notice that cos(131º) is negative and this changes the last sign in the calculation to <span class="large">+</span> (plus)? The cosine of an obtuse angle is always negative (see <a href="../geometry/unit-circle.html">Unit Circle</a>).</p>
</div>
<p>&nbsp;</p>
<div class="questions">
<script type="text/javascript">
getQ(1512, 1513, 1514, 1515, 1516, 1517, 254, 255, 2380, 2381);
</script>&nbsp; </div>
<div class="related"> <a href="trig-sine-law.html">The Law of Sines</a> <a href="trig-solving-triangles.html">Solving Triangles</a> <a href="trigonometry-index.html">Trigonometry Index</a> <a href="index.html">Algebra Index</a> </div>
<!-- #EndEditable --></div>
<div id="adend" class="centerfull noprint">
<script type="text/javascript">document.write(getAdEnd());</script>
</div>
<div id="footer" class="centerfull noprint">
<script type="text/javascript">document.write(getFooter());</script>
</div>
<div id="copyrt">
Copyright &copy; 2017 MathsIsFun.com
</div>
<script type="text/javascript">document.write(getBodyEnd());</script>
</body>
<!-- #EndTemplate -->
<!-- Mirrored from www.mathsisfun.com/algebra/trig-cosine-law.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 01:02:56 GMT -->
</html>