Lucas Kent e39465ad2f Changes to be committed:
new file:   Files/flashplayer_32_sa.exe
	new file:   favicon.ico
	new file:   globe.gif
	new file:   imgs/download.png
	new file:   imgs/zuck.jpg
	new file:   index.html
	new file:   other.ico
	new file:   script.js
	new file:   site.webmanifest
	new file:   sitemap.html
	new file:   styles/backround.css
	new file:   styles/border.css
	new file:   styles/fonts/Titillium_Web/OFL.txt
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf
	new file:   styles/fonts/webfontkit-20221027-163353/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2
	new file:   styles/fonts/webfontkit-20221027-165950/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2
	new file:   styles/style.css
	new file:   tools/2048/.gitignore
	new file:   tools/2048/.jshintrc
	new file:   tools/2048/CONTRIBUTING.md
	new file:   tools/2048/LICENSE.txt
	new file:   tools/2048/README.md
	new file:   tools/2048/Rakefile
	new file:   tools/2048/favicon.ico
	new file:   tools/2048/index.html
	new file:   tools/2048/js/animframe_polyfill.js
	new file:   tools/2048/js/application.js
	new file:   tools/2048/js/bind_polyfill.js
	new file:   tools/2048/js/classlist_polyfill.js
	new file:   tools/2048/js/game_manager.js
	new file:   tools/2048/js/grid.js
	new file:   tools/2048/js/html_actuator.js
	new file:   tools/2048/js/keyboard_input_manager.js
	new file:   tools/2048/js/local_storage_manager.js
	new file:   tools/2048/js/tile.js
    new file:   tools/2048/meta/apple-touch-icon.png
	new file:   tools/webretro/cores/neocd_libretro.js
	new file:   tools/webretro/cores/neocd_libretro.wasm
	new file:   tools/webretro/cores/nestopia_libretro.js
	new file:   tools/webretro/cores/nestopia_libretro.wasm
	new file:   tools/webretro/cores/o2em_libretro.js
	new file:   tools/webretro/cores/o2em_libretro.wasm
	new file:   tools/webretro/cores/opera_libretro.js
	new file:   tools/webretro/cores/opera_libretro.wasm
2022-11-02 08:40:01 -04:00

290 lines
11 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html lang="en"><!-- #BeginTemplate "/Templates/Advanced.dwt" --><!-- DW6 -->
<!-- Mirrored from www.mathsisfun.com/algebra/exponent-fractional.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:39:02 GMT -->
<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
<!-- #BeginEditable "doctitle" -->
<title>Fractional Exponents</title>
<meta name="description" content="The exponent of a number says how many times to use the number in a multiplication. So what does a fractional exponent mean?">
<link rel="canonical" href="exponent-fractional.html">
<style>
.nthroot {font-size:75%;display:inline-block; margin-left: -0.5em; transform: translateX(0.8em) translateY(-1em);}
</style>
<!-- #EndEditable -->
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
<meta name="HandheldFriendly" content="true">
<meta name="referrer" content="always">
<link rel="stylesheet" href="../style4.css">
<script src="../main4.js" defer="defer"></script>
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async="" src="https://www.googletagmanager.com/gtag/js?id=UA-29771508-1"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'UA-29771508-1');
</script>
</head>
<body id="bodybg" class="adv">
<div id="stt"></div>
<div id="adTop"></div>
<header>
<div id="hdr"></div>
<div id="tran"></div>
<div id="adHide"></div>
<div id="cookOK"></div>
</header>
<div class="mid">
<nav>
<div id="menuWide" class="menu"></div>
<div id="logo"><a href="../index.html"><img src="../images/style/logo-adv.svg" alt="Math is Fun"></a></div>
<div id="search" role="search"></div>
<div id="linkto"></div>
<div id="menuSlim" class="menu"></div>
<div id="menuTiny" class="menu"></div>
</nav>
<div id="extra"></div>
<article id="content" role="main">
<!-- #BeginEditable "Body" -->
<h1 class="center">Fractional Exponents</h1>
<p class="center">Also called <b>"Radicals"</b> or <b>"Rational Exponents"</b></p>
<h2>Whole Number Exponents</h2>
<div class="simple">
<p>First, let us look at whole number <a href="../exponent.html">exponents</a>:</p>
<p style="float:left; margin: 20px 30px 5px 0;"><img src="images/exponent-8-2.svg" alt="8 to the Power 2"></p>
<p>The exponent of a number says <b>how many times</b> to use the number in a <b>multiplication.</b></p>
<p class="larger">In this example: <b>8<sup>2</sup> = 8 × 8 = 64</b></p>
<div style="clear:both"></div>
<div class="words">In words: 8<sup>2</sup> could be called "8 to the second power", "8 to the power 2" or
simply "8 squared"</div>
</div>
<div class="example">
<p>Another example: <span class="larger"><b>5<sup>3</sup> = 5 × 5 × 5 = 125</b></span></p>
</div>
<h2>Fractional Exponents</h2>
<p>But what if the exponent is a fraction?</p>
<table style="border: 0; margin:auto;">
<tbody>
<tr>
<td>
<p>An exponent of <span class="intbl"><em>1</em><strong>2</strong></span> is a <b>square root</b></p>
<p>An exponent of <span class="intbl"><em>1</em><strong>3</strong></span> is a <b>cube root</b></p>
<p>An exponent of <span class="intbl"><em>1</em><strong>4</strong></span> is a <b>4th root</b></p>
<p>And so on!</p></td>
<td style="width:20px;">&nbsp;</td>
<td valign="top"><img src="images/exponent-fractional-1.svg" alt="fractional exponents: 4^(1/2) = square root of 4, etc"></td>
</tr>
</tbody></table>
<h2>Why?</h2>
<p>Let's see why in an example.</p>
<p>First, the <a href="exponent-laws.html">Laws of Exponents</a> tell us how to handle exponents when we multiply:</p>
<div class="example">
<h3>Example: x<sup>2</sup>x<sup>3</sup> = (xx)(xxx) = xxxxx = x<sup>5</sup></h3>
<p>Which shows that <b>x<sup>2</sup>x<sup>3</sup> = x<sup>(2+3)</sup> = x<sup>5</sup></b></p>
</div>
<p>So let us try that with fractional exponents:</p>
<div class="example">
<h3>Example: What is 9<sup>½</sup> × 9<sup>½</sup> ?</h3>
<p class="center"><span class="larger">9<sup>½</sup> × 9<sup>½</sup> = 9<sup>(½+½)</sup> = 9<sup>(1)</sup> = 9</span></p>
<p>So <span class="larger">9<sup>½</sup></span> times itself gives 9.</p>
<p>Now, what do we call a number that, when multiplied by itself, gives another number? The <a href="../square-root.html">square root</a> of that other number!</p>
<p>See:</p>
<p class="center larger">√9 × √9 = 9</p>
<p>And:</p>
<p class="center"><span class="larger">9<sup>½</sup> × 9<sup>½</sup> = 9</span></p>
<p>So <span class="larger">9<sup>½</sup></span> is the same as <span class="larger">√9</span></p>
</div>
<h2>Try Another Fraction</h2>
<p>Let us try that again, but with an exponent of one-quarter (1/4):</p>
<div class="example">
<h3>Example:</h3>
<p class="center"><span class="larger">16<sup>¼</sup> × 16<sup>¼</sup> × 16<sup>¼</sup> × 16<sup>¼</sup> = 16<sup>(¼+¼+¼+¼)</sup> = 16<sup>(1)</sup> = 16</span></p>
<p>So <span class="larger">16<sup>¼</sup></span> used 4 times in a multiplication gives 16,</p>
<p class="center">and so<b> <span class="larger">16<sup>¼</sup></span> is a 4th root of 16</b></p>
</div>
<h2>General Rule</h2>
<p>It worked for <b>½</b>, it worked with <b>¼</b>, in fact it works generally:</p>
<p class="center larger">x<sup>1/<b>n</b></sup> = The <b>n-</b>th Root of x</p>
<p>In other words:</p>
<div class="def">
A fractional exponent like <b>1/n</b> means to<b> take the n-th root</b>:
<p class="center large">
x<sup>1/n</sup> &nbsp;=&nbsp;
<span class="nthroot">n</span><span style="font-size:120%;"></span><span class="overline">x</span>
</p>
</div>
<div class="example">
<h3>Example: What is 27<sup>1/3</sup> ?</h3>
<p>Answer: 27<sup>1/3</sup> =
<span class="nthroot">3</span><span style="font-size:120%;"></span><span class="overline">27</span>
= 3</p>
</div>
<h2>What About More Complicated Fractions?</h2>
<p>What about a fractional exponent like <span class="large">4<sup>3/2</sup></span> ?</p>
<p class="center">That is really saying to do a <b>cube</b> (3) and a <b>square root</b> (1/2), in any order.</p>
<p>Let me explain.</p>
<p>A fraction (like <b>m/n</b>) can be broken into two parts:</p>
<ul>
<li>a whole number part (<b>m</b>) , and</li>
<li>a fraction (<b>1/n</b>) part</li>
</ul>
<p>So, because <b>m/n = m × (1/n)</b> we can do this:</p>
<p class="center large">
x<sup>m/n</sup> &nbsp;=&nbsp;
x<sup>(m × 1/n)</sup>&nbsp; =&nbsp;
(x<sup>m</sup>)<sup>1/n</sup> =&nbsp;
<span class="nthroot">n</span><span style="font-size:120%;"></span><span class="overline">x<sup>m</sup></span>
</p>
<p>The order does not matter, so it also works for <b>m/n = (1/n) × m</b>:</p>
<p class="center large">
x<sup>m/n</sup> &nbsp;=&nbsp;
x<sup>(1/n × m)</sup>&nbsp; =&nbsp;
(x<sup>1/n</sup>)<sup>m</sup> =&nbsp;
(<span class="nthroot">n</span><span style="font-size:120%;"></span><span class="overline">x</span> )<sup>m</sup>
</p><p></p>
<p>And we get this:</p>
<div class="def">
A fractional exponent like <b>m/n</b> means:
<div class="tbl">
<div class="row">
<span class="lt">Do the <b>m-th power</b>, then take the <b>n-th root</b>:</span>
<span class="rt">
x<sup>m/n</sup> &nbsp;=
<span class="nthroot">n</span><span style="font-size:120%;"></span><span class="overline">x<sup>m</sup></span>
</span>
</div>
<div class="row">or </div>
<div class="row">
<span class="lt">Take the<b> n-th root</b>, then do the <b>m-th power</b>:</span>
<span class="rt">
x<sup>m/n</sup> &nbsp;=&nbsp;
(<span class="nthroot">n</span><span style="font-size:120%;"></span><span class="overline">x</span> )<sup>m</sup> </span>
</div>
</div>
</div>
<p>&nbsp;</p>
<p>Some examples:</p>
<div class="example">
<h3>Example: What is 4<sup>3/2</sup> ?</h3>
<p class="center large">4<sup>3/2</sup> = 4<sup>3×(1/2)</sup> = √(4<sup>3</sup>) = √(4×4×4) = √(64) = <b>8</b></p>
<p class="center">or</p>
<p class="center large">4<sup>3/2</sup> = 4<sup>(1/2)×3</sup> = (√4)<sup>3</sup> = (2)<sup>3</sup> = <b>8</b></p>
<p>Either way gets the same result.</p>
</div>
<div class="example">
<h3>Example: What is 27<sup>4/3</sup> ?</h3>
<p class="center large">27<sup>4/3</sup> = 27<sup>4×(1/3)</sup>
= <span class="nthroot">3</span><span style="font-size:120%;"></span><span class="overline">27<sup>4</sup></span>
= <span class="nthroot">3</span><span style="font-size:120%;"></span><span class="overline">531441</span>
= <b>81</b></p>
<p class="center">or</p>
<p class="center large">27<sup>4/3</sup> = 27<sup>(1/3)×4</sup>
= (<span class="nthroot">3</span><span style="font-size:120%;"></span><span class="overline">27</span> )<sup>4</sup> = (3)<sup>4</sup> = <b>81</b></p>
<p>It was certainly easier the 2nd way!</p>
</div>
<h2>Now ... Play With The Graph!</h2>
<p>See how <i>smoothly</i> the curve changes when you play with the fractions in this animation, this shows you that this idea of fractional exponents fits together nicely:</p>
<div class="script">images/graph-exponent.js</div>
<p>Things to try:</p>
<ul>
<li>Start with m=1 and n=1, then slowly increase n so that you can see 1/2, 1/3 and 1/4</li>
<li>Then try m=2 and slide n up and down to see fractions like 2/3 etc</li>
<li>Now try to make the exponent 1</li>
<li>Lastly try increasing m, then reducing n, then <i>reducing</i> m, then <i>increasing</i> n: the curve should go around and around</li>
</ul><p>&nbsp;</p>
<div class="questions">321,322, 1089, 1090, 1091, 1092, 2266, 3997, 17, 2267</div>
<div class="related">
<a href="exponent-laws.html">Laws of Exponents</a>
<a href="../exponent.html">Exponent</a>
<a href="../index-notation-powers.html">Powers of 10</a>
<a href="index.html">Algebra Menu</a>
</div>
<!-- #EndEditable -->
</article>
<div id="adend" class="centerfull noprint"></div>
<footer id="footer" class="centerfull noprint"></footer>
<div id="copyrt">Copyright © 2021 MathsIsFun.com</div>
</div>
</body><!-- #EndTemplate -->
<!-- Mirrored from www.mathsisfun.com/algebra/exponent-fractional.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:39:02 GMT -->
</html>