Lucas Kent e39465ad2f Changes to be committed:
new file:   Files/flashplayer_32_sa.exe
	new file:   favicon.ico
	new file:   globe.gif
	new file:   imgs/download.png
	new file:   imgs/zuck.jpg
	new file:   index.html
	new file:   other.ico
	new file:   script.js
	new file:   site.webmanifest
	new file:   sitemap.html
	new file:   styles/backround.css
	new file:   styles/border.css
	new file:   styles/fonts/Titillium_Web/OFL.txt
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf
	new file:   styles/fonts/webfontkit-20221027-163353/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2
	new file:   styles/fonts/webfontkit-20221027-165950/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2
	new file:   styles/style.css
	new file:   tools/2048/.gitignore
	new file:   tools/2048/.jshintrc
	new file:   tools/2048/CONTRIBUTING.md
	new file:   tools/2048/LICENSE.txt
	new file:   tools/2048/README.md
	new file:   tools/2048/Rakefile
	new file:   tools/2048/favicon.ico
	new file:   tools/2048/index.html
	new file:   tools/2048/js/animframe_polyfill.js
	new file:   tools/2048/js/application.js
	new file:   tools/2048/js/bind_polyfill.js
	new file:   tools/2048/js/classlist_polyfill.js
	new file:   tools/2048/js/game_manager.js
	new file:   tools/2048/js/grid.js
	new file:   tools/2048/js/html_actuator.js
	new file:   tools/2048/js/keyboard_input_manager.js
	new file:   tools/2048/js/local_storage_manager.js
	new file:   tools/2048/js/tile.js
    new file:   tools/2048/meta/apple-touch-icon.png
	new file:   tools/webretro/cores/neocd_libretro.js
	new file:   tools/webretro/cores/neocd_libretro.wasm
	new file:   tools/webretro/cores/nestopia_libretro.js
	new file:   tools/webretro/cores/nestopia_libretro.wasm
	new file:   tools/webretro/cores/o2em_libretro.js
	new file:   tools/webretro/cores/o2em_libretro.wasm
	new file:   tools/webretro/cores/opera_libretro.js
	new file:   tools/webretro/cores/opera_libretro.wasm
2022-11-02 08:40:01 -04:00

355 lines
18 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html lang="en"><!-- #BeginTemplate "/Templates/Main.dwt" --><!-- DW6 -->
<!-- Mirrored from www.mathsisfun.com/algebra/completing-square.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:37:03 GMT -->
<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
<!-- #BeginEditable "doctitle" -->
<title>Completing the Square</title>
<!-- #EndEditable -->
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
<meta name="HandheldFriendly" content="true">
<meta name="referrer" content="always">
<link rel="preload" href="../images/style/font-champ-bold.ttf" as="font" type="font/ttf" crossorigin="">
<link rel="preload" href="../style4.css" as="style">
<link rel="preload" href="../main4.js" as="script">
<link rel="stylesheet" href="../style4.css">
<script src="../main4.js" defer="defer"></script>
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async="" src="https://www.googletagmanager.com/gtag/js?id=UA-29771508-1"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'UA-29771508-1');
</script>
</head>
<body id="bodybg">
<div id="stt"></div>
<div id="adTop"></div>
<header>
<div id="hdr"></div>
<div id="tran"></div>
<div id="adHide"></div>
<div id="cookOK"></div>
</header>
<div class="mid">
<nav>
<div id="menuWide" class="menu"></div>
<div id="logo"><a href="../index.html"><img src="../images/style/logo.svg" alt="Math is Fun"></a></div>
<div id="search" role="search"></div>
<div id="linkto"></div>
<div id="menuSlim" class="menu"></div>
<div id="menuTiny" class="menu"></div>
</nav>
<div id="extra"></div>
<article id="content" role="main">
<!-- #BeginEditable "Body" -->
<h1 class="center">Completing the Square</h1>
<p>"<b>Completing the Square</b>" is where we ...</p>
<div class="simple">
<table style="border: 0; margin:auto;">
<tbody>
<tr style="text-align:center;">
<td> ... take a <a href="quadratic-equation.html">Quadratic Equation</a><br>
like this:</td>
<td rowspan="2"><img src="../images/style/right-arrow.gif" alt="right arrow" height="46" width="46"></td>
<td>and turn it<br>
into this:</td>
</tr>
<tr style="text-align:center;">
<td><span class="large" style="white-space: nowrap;">ax<sup>2</sup> + bx + c = 0</span></td>
<td><span class="large" style="white-space: nowrap;">a(x+<i>d</i>)<sup>2</sup> + <i>e</i> = 0</span></td>
</tr>
</tbody></table>
</div>
<p><br></p>
<div class="tbl">
<div class="row"><span class="left">For those of you in a hurry, I can tell you that: </span><span class="right"><span class="center large">d = <span class="intbl"><em>b</em><strong>2a</strong></span></span></span></div>
<div class="row"><span class="left">and:</span><span class="right"><span class="center large">e = c <span class="intbl"><em>b<sup>2</sup></em><strong>4a</strong></span></span></span></div>
</div>
<p><br>
But if you have time, let me show you how to "<b>Complete the Square</b>" yourself.</p>
<h2>Completing the Square</h2>
<p>Say we have a simple expression like <span class="large">x<sup>2</sup> + bx</span>. Having <span class="large">x</span> twice in the same expression can make life hard. What can we do?</p>
<p>Well, with a little inspiration from Geometry we can convert it, like this:</p>
<p class="center"><img src="images/completing-square-geometry.svg" alt="Completing the Square Geometry" style="max-width:100%" height="156" width="656"></p>
<p>As you can see <span class="large">x<sup>2</sup> + bx</span> can be rearranged <i><b>nearly</b></i> into a square ...</p>
<p class="center">... and we can <b>complete the square</b> with <span class="large">(b/2)<sup>2</sup> </span></p>
<p>In Algebra it looks like this:</p>
<div class="simple">
<table style="border: 0; margin:auto;">
<tbody>
<tr style="text-align:center;">
<td><span class="larger">x<sup>2</sup> + bx</span></td>
<td><span class="larger">+ (b/2)<sup>2</sup></span></td>
<td style="width:50px;"><span class="large">=</span></td>
<td><span class="larger">(x+b/2)<sup>2</sup></span></td>
</tr>
<tr style="text-align:center;">
<td>&nbsp;</td>
<td>"Complete the<br>
Square"</td>
<td style="width:50px;">&nbsp;</td>
<td>&nbsp;</td>
</tr>
</tbody></table> </div>
<p>So, by adding <span class="large">(b/2)<sup>2</sup></span> we can complete the square.</p>
<p class="center">The result of <span class="larger">(x+b/2)<sup>2</sup></span> has <span class="large">x</span> only <b>once</b>, which is easier to use.</p>
<h2>Keeping the Balance</h2>
<p>Now ... we can't just <i><b>add</b></i> <span class="large">(b/2)<sup>2</sup></span> without also <i><b>subtracting</b></i> it too! Otherwise the whole value changes.</p>
<p>So let's see how to do it properly with an example:</p>
<table style="margin:auto;">
<tbody>
<tr>
<td>Start with: &nbsp;</td>
<td><img src="images/completing-square-example1.svg" alt="x^2 + 6x + 7" height="25" width="137"></td>
</tr>
<tr>
<td>&nbsp;</td>
<td>("b" is 6 in this case)</td>
</tr>
<tr>
<td>&nbsp;</td>
<td>&nbsp;</td>
</tr>
<tr>
<td colspan="2">Complete the Square:</td>
</tr>
<tr>
<td>
<p>&nbsp;</p></td>
<td><img src="images/completing-square-insert.svg" alt="x^2 + 6x + (6/2)^2 + 7 - (6/2)^2 " height="110" width="307">
<p align="right">Also <b>subtract</b> the new term</p></td>
</tr>
<tr>
<td colspan="2">
<p>Simplify it and we are done.</p></td>
</tr>
<tr>
<td>&nbsp;</td>
<td><img src="images/completing-square-simplify.svg" alt="simplifies to (x+3)^2" height="138" width="525"></td>
</tr>
</tbody></table>
<p>The result:</p>
<p class="center larger">x<sup>2</sup> + 6x + 7 &nbsp; = &nbsp; (x+3)<sup>2</sup> 2</p>
<p class="center">And now <span class="large">x</span> only appears once, and our job is done!</p>
<h2>A Shortcut Approach</h2>
<p>Here is a quick way to get an answer. You may like this method.</p>
<p>First think about the result we want: <span class="large">(x+d)<sup>2</sup> + e</span></p>
<p>After <a href="special-binomial-products.html">expanding</a> (x+d)<sup>2</sup> we get: <span class="large">x<sup>2</sup> + 2dx + d<sup>2</sup> + e</span></p>
<p>Now see if we can turn our example into that form to discover d and e</p>
<div class="example">
<h3>Example: try to fit <span class="center large">x<sup>2</sup> + 6x + 7</span> into <span class="large">x<sup>2</sup> + 2dx + d<sup>2</sup> + e</span></h3>
<p class="center"><img src="images/completing-square-expanded.svg" alt="x^2 + (6x) + [7] matches x^2 + (2dx) + [d^2+e]" style="max-width:100%" height="119" width="413"></p>
<p>Now we can "force" an answer:</p>
<ul>
<li>We know that <span class="large">6x</span> must end up as <span class="large">2dx</span>, so <span class="large"><b>d</b></span><b> must be 3</b></li>
<li>Next we see that <span class="large">7</span> must become d<sup>2</sup> + e = <span class="large">9 + e</span>, so <span class="large"><b>e</b></span><b> must be 2</b></li>
</ul>
<p>And we get the same result <span class="large">(x+3)<sup>2</sup> 2</span> as above!</p>
</div>
<p>&nbsp;</p>
<p>Now, let us look at a useful application: solving Quadratic Equations ...</p>
<h2>Solving General Quadratic Equations by Completing the Square</h2>
<p>We can complete the square to <b>solve</b> a <a href="quadratic-equation.html">Quadratic Equation</a> (find where it is equal to zero).</p>
<p>But a general Quadratic Equation can have a <a href="definitions.html">coefficient</a> of <span class="large">a</span> in front of <span class="large">x<sup>2</sup></span>:</p>
<p class="center large">ax<sup>2</sup> + bx + c = 0</p>
<p>But that is easy to deal with ... just divide the whole equation by "a" first, then carry on:</p>
<p class="center large">x<sup>2</sup> + (b/a)x + c/a = 0</p>
<h2>Steps</h2>
<p>Now we can <b>solve</b> a Quadratic Equation in 5 steps:</p>
<div class="bigul">
<ul>
<li><b>Step 1</b> Divide all terms by <b>a</b> (the coefficient of <b>x<sup>2</sup></b>).</li>
<li><b>Step 2</b> Move the number term (<b>c/a</b>) to the right side of the equation.</li>
<li><b>Step 3</b> Complete the square on the left side of the equation and balance this by adding the same value to the right side of the equation.</li>
</ul>
<p>We now have something that looks like (x + p)<sup>2</sup> = q, which can be solved rather easily:</p>
<ul>
<li><b>Step 4</b> Take the square root on both sides of the equation.</li>
</ul>
<ul>
<li><b>Step 5</b> Subtract the number that remains on the left side of the equation to find <b>x</b>.</li>
</ul>
</div>
<h2>Examples</h2>
<p>OK, some examples will help!</p>
<div class="example">
<h3>Example 1: Solve x<sup>2</sup> + 4x + 1 = 0</h3>
<p><b>Step 1</b> can be skipped in this example since the coefficient of x<sup>2</sup> is 1</p>
<p><b>Step 2</b> Move the number term to the right side of the equation:</p>
<div class="so">x<sup>2</sup> + 4x = -1</div>
<p><b>Step 3</b> Complete the square on the left side of the equation and balance this by adding the same number to the right side of the equation.</p>
<p>(b/2)<sup>2</sup> = (4/2)<sup>2</sup> = 2<sup>2</sup> = 4</p>
<div class="so">x<sup>2</sup> + 4x + 4 = -1 + 4</div>
<div class="so">(x + 2)<sup>2</sup> = 3</div>
<p><b>Step 4</b> Take the square root on both sides of the equation:</p>
<div class="so"> x + 2 = ±√3 = ±1.73 (to 2 decimals)</div>
<p><b>Step 5</b> Subtract 2 from both sides:</p>
<div class="so"> x = ±1.73 2 = -3.73 or -0.27 </div>
</div>
<table style="border: 0;">
<tbody>
<tr>
<td>
<p>And here is an interesting and useful thing.</p>
<p>At the end of step 3 we had the equation:</p>
<div class="so">(x + <span class="hilite">2</span>)<sup>2</sup> = <span class="hilite">3</span></div>
<p class="center">It gives us the <b>vertex</b> (turning point) of x<sup>2</sup> + 4x + 1: <b>(-2, -3)</b></p></td>
<td>&nbsp;</td>
<td><img src="images/completing-square-graph2.gif" alt="graph" height="160" width="161"></td>
</tr>
</tbody></table>
<p>&nbsp;</p>
<div class="example">
<h3>Example 2: Solve 5x<sup>2</sup> 4x 2 = 0</h3>
<p><b>Step 1</b> Divide all terms by 5</p>
<div class="so"> x<sup>2</sup> 0.8x 0.4 = 0</div>
<p><b>Step 2</b> Move the number term to the right side of the equation:</p>
<div class="so"> x<sup>2</sup> 0.8x = 0.4</div>
<p><b>Step 3</b> Complete the square on the left side of the equation and balance this by adding the same number to the right side of the equation:</p>
<p>(b/2)<sup>2</sup> = (0.8/2)<sup>2</sup> = 0.4<sup>2</sup> = 0.16</p>
<div class="so">x<sup>2</sup> 0.8x + 0.16 = 0.4 + 0.16</div>
<div class="so">(x 0.4)<sup>2</sup> = 0.56</div>
<p><b>Step 4</b> Take the square root on both sides of the equation:</p>
<div class="so"> x 0.4 = ±√0.56 = ±0.748 (to 3 decimals)</div>
<p><b>Step 5</b> Subtract (-0.4) from both sides (in other words, add 0.4):</p>
<div class="so"> x = ±0.748 + 0.4 = -0.348 or 1.148</div>
</div>
<h2>Why "Complete the Square"?</h2>
<p>Why complete the square when we can just use the <a href="../quadratic-equation-solver.html">Quadratic Formula</a> to solve a Quadratic Equation?</p>
<div class="indent50px">
<p>Well, one reason is given above, where the new form not only shows us the vertex, but makes it easier to solve.</p>
<p>There are also times when the form <b>ax<sup>2</sup> + bx + c</b> may be part of a <b>larger</b> question and rearranging it as <b>a(x+<i>d</i>)<sup>2</sup> + <i>e</i></b> makes the solution easier, because <b>x</b> only appears once.</p>
<p>For example "x" may itself be a function (like <i>cos(z)</i>) and rearranging it may open up a path to a better solution.</p>
<p>Also Completing the Square is the first step in the <a href="quadratic-equation-derivation.html">Derivation of the Quadratic Formula</a></p>
</div>
<p>Just think of it as another tool in your mathematics toolbox.</p>
<p>&nbsp;</p>
<div class="questions">364, 1205, 365, 2331, 2332, 3213, 3896, 3211, 3212, 1206</div>
<p>&nbsp;</p>
<div class="center80">
<h3>Footnote: Values of "d" and "e"</h3>
<p>How did I get the values of <b>d</b> and <b>e</b> from the top of the page?</p>
<div class="beach">
<table align="center" cellpadding="4" border="0">
<tbody>
<tr>
<td>Start with</td>
<td style="background-color:white;"><b><img src="images/latex/cs-h.gif" alt="equn" height="17" width="118"></b></td>
</tr>
<tr>
<td>Divide the equation by <b>a</b></td>
<td style="background-color:white;"><b><img src="images/latex/cs-i.gif" alt="equn" height="35" width="119"></b></td>
</tr>
<tr>
<td>Put <b>c/a</b> on other side</td>
<td style="background-color:white;"><b><img src="images/latex/cs-j.gif" alt="equn" height="35" width="103"></b></td>
</tr>
<tr>
<td>Add <b>(b/2a)<sup>2</sup></b> to both sides</td>
<td style="background-color:white;"><b><sup><img src="images/latex/cs-k.gif" alt="equn" height="46" width="240"></sup></b></td>
</tr>
<tr>
<td colspan="2">&nbsp;</td>
</tr>
<tr>
<td>"Complete the Square"</td>
<td style="background-color:white;"><b> <sup><img src="images/latex/cs-l.gif" alt="equn" height="46" width="190"></sup></b></td>
</tr>
<tr>
<td>Now bring everything back...</td>
<td><br>
</td>
</tr>
<tr>
<td>... to the left side</td>
<td style="background-color:white;"><b><img src="images/latex/cs-m.gif" alt="equn" height="46" width="206"></b></td>
</tr>
<tr>
<td>... to the original multiple <b>a</b> of x<sup>2</sup></td>
<td style="background-color:white;"><b><img src="images/latex/cs-n.gif" alt="equn" height="46" width="187"></b></td>
</tr>
</tbody></table>
</div><br>
<div class="tbl">
<div class="row"><span class="left"> And you will notice that we have: </span><span class="right">
<div class="large">a(x+d)<sup>2</sup> + e = 0</div></span></div>
<div class="row"><span class="left">Where:</span><span class="right"><span class="center large">d = <span class="intbl">
<em>b</em>
<strong>2a</strong>
</span></span></span></div>
<div class="row"><span class="left">and:</span><span class="right"><span class="center large">e = c <span class="intbl">
<em>b<sup>2</sup></em>
<strong>4a</strong>
</span></span></span></div>
<div class="row"><span class="left">Just like at the top of the page!</span></div>
</div>
</div>
<p>&nbsp;</p>
<div class="related">
<a href="quadratic-equation.html">Quadratic Equations</a>
<a href="factoring-quadratics.html">Factoring Quadratics</a>
<a href="quadratic-equation-graphing.html">Graphing Quadratic Equations</a>
<a href="quadratic-equation-real-world.html">Real World Examples of Quadratic Equations</a>
<a href="quadratic-equation-derivation.html">Derivation of Quadratic Equation</a>
<a href="../quadratic-equation-solver.html">Quadratic Equation Solver</a>
<a href="index.html">Algebra Index</a>
</div>
<!-- #EndEditable -->
</article>
<div id="adend" class="centerfull noprint"></div>
<footer id="footer" class="centerfull noprint"></footer>
<div id="copyrt">Copyright © 2021 MathsIsFun.com</div>
</div>
</body><!-- #EndTemplate -->
<!-- Mirrored from www.mathsisfun.com/algebra/completing-square.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:37:06 GMT -->
</html>